Article

A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome.

G3-Genes Genomes Genetics (Impact Factor: 2.51). 01/2012; 2(1):43-58. DOI: 10.1534/g3.111.001552
Source: PubMed

ABSTRACT Genetic linkage maps play fundamental roles in understanding genome structure, explaining genome formation events during evolution, and discovering the genetic bases of important traits. A high-density cotton (Gossypium spp.) genetic map was developed using representative sets of simple sequence repeat (SSR) and the first public set of single nucleotide polymorphism (SNP) markers to genotype 186 recombinant inbred lines (RILs) derived from an interspecific cross between Gossypium hirsutum L. (TM-1) and G. barbadense L. (3-79). The genetic map comprised 2072 loci (1825 SSRs and 247 SNPs) and covered 3380 centiMorgan (cM) of the cotton genome (AD) with an average marker interval of 1.63 cM. The allotetraploid cotton genome produced equivalent recombination frequencies in its two subgenomes (At and Dt). Of the 2072 loci, 1138 (54.9%) were mapped to 13 At-subgenome chromosomes, covering 1726.8 cM (51.1%), and 934 (45.1%) mapped to 13 Dt-subgenome chromosomes, covering 1653.1 cM (48.9%). The genetically smallest homeologous chromosome pair was Chr. 04 (A04) and 22 (D04), and the largest was Chr. 05 (A05) and 19 (D05). Duplicate loci between and within homeologous chromosomes were identified that facilitate investigations of chromosome translocations. The map augments evidence of reciprocal rearrangement between ancestral forms of Chr. 02 and 03 versus segmental homeologs 14 and 17 as centromeric regions show homeologous between Chr. 02 (A02) and 17 (D02), as well as between Chr. 03 (A03) and 14 (D03). This research represents an important foundation for studies on polyploid cottons, including germplasm characterization, gene discovery, and genome sequence assembly.

0 Followers
 · 
148 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Premise of the study: Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci. Methods and Results: Using Illumina next-generation sequencing, 54 million reads were collected from restriction enzyme–digested DNA libraries of a diversity of Gossypium taxa. Loci with one to three SNPs were discovered using the Stacks software package, yielding 25,529 new cotton SNP combinations, including those that are polymorphic at both interspecific and intraspecific levels. Frequencies of predicted dual-homozygous (aa/bb) marker polymorphisms ranged from 6.7–11.6% of total shared fragments in intraspecific comparisons and from 15.0–16.4% in interspecific comparisons. Conclusions: This resource provides dual-homozygous (aa/bb) marker polymorphisms. Both in silico and experimental validation efforts demonstrated that these markers are enriched for single orthologous loci that are homozygous for alternative alleles.
    03/2015; 3(3). DOI:10.3732/apps.1400077
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytogenetic map can provide not only information of the genome structure, but also can build a solid foundation for genetic research. With the developments of molecular and cytogenetic studies in cotton (Gossypium), the construction of cytogenetic map is becoming more and more imperative. A cytogenetic map of chromosome 1 (A101) of Gossypium herbaceum (A1) which includes 10 bacterial artificial chromosome (BAC) clones was constructed by using fluorescent in situ hybridization (FISH). Meanwhile, comparison and analysis were made for the cytogenetic map of chromosome 1 (A101) of G. herbaceum with four genetic linkage maps of chromosome 1 (Ah01) of G. hirsutum ((AD)1) and one genetic linkage map of chromosome 1 of (A101) G. arboreum (A2). The 10 BAC clones were also used to be localized on G. raimondii (D5) chromosome 1 (D501), and 2 of them showed clear unique hybridized signals. Furthermore, these 2 BAC clones were also shown localized on chromosome 1 of both A sub-genome and D sub-genome of G. hirsutum. The comparison of the cytogenetic map with genetic linkage maps showed that most of the identified marker-tagged BAC clones appearing same orders in different maps except three markers showing different positions, which might indicate chromosomal segmental rearrangements. The positions of the 2 BAC clones which were localized on Ah01 and Dh01 chromosomes were almost the same as that on A101 and D501 chromosomes. The corresponding anchored SSR markers of these 2 BAC clones were firstly found to be localized on chromosome D501 (Dh01) as they were not seen mapped like this in any genetic map reported.
    Molecular Cytogenetics 01/2015; 8(1):2. DOI:10.1186/s13039-015-0106-y · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.ResultsA total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.Conclusion Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.
    BMC Genomics 02/2015; 16(1):55. DOI:10.1186/s12864-015-1265-2 · 4.04 Impact Factor

Full-text (5 Sources)

Download
52 Downloads
Available from
May 31, 2014