Cedeno-Laurent F, Watanabe R, Teague JE et al.Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood 119:3534-3538

Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
Blood (Impact Factor: 10.43). 03/2012; 119(15):3534-8. DOI: 10.1182/blood-2011-12-396457
Source: PubMed

ABSTRACT Tumor-derived galectin-1 (Gal-1), a β-galactoside-binding S-type lectin, has been shown to encourage T-cell death and promote T cell-mediated tumor immune escape. In this report, we show that patients with leukemic cutaneous T-cell lymphomas, known to have limited complexity of their T-cell repertoires, have a predominant T helper type-2 (Th2) cytokine profile and significantly elevated plasma levels of Gal-1 compared with healthy controls. Circulating clonal malignant T cells were a major source of Gal-1. The conditioned supernatant of cultured malignant T cells induced a β-galactoside-dependent inhibition of normal T-cell proliferation and a Th2 skewing of cytokine production. These data implicate Gal-1 in development of the Th2 phenotype in patients with advanced-stage cutaneous T-cell lymphoma and highlight the Gal-1-Gal-1 ligand axis as a potential therapeutic target for enhancing antitumor immune responses.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms accounting for the protection of the fetal semi-allograft from maternal immune cells remain incompletely understood. In previous studies, we showed that galectin-1 (Gal1), an immunoregulatory glycan-binding protein, hierarchically triggers a cascade of tolerogenic events at the mouse fetomaternal interface. Here, we show that Gal1 confers immune privilege to human trophoblast cells through the modulation of a number of regulatory mechanisms. Gal1 was mainly expressed in invasive extravillous trophoblast cells of human first trimester and term placenta in direct contact with maternal tissue. Expression of Gal1 by the human trophoblast cell line JEG-3 was primarily controlled by progesterone and pro-inflammatory cytokines and impaired T-cell responses by limiting T cell viability, suppressing the secretion of Th1-type cytokines and favoring the expansion of CD4(+)CD25(+)FoxP3(+) regulatory T (T(reg)) cells. Targeted inhibition of Gal1 expression through antibody (Ab)-mediated blockade, addition of the specific disaccharide lactose or retroviral-mediated siRNA strategies prevented these immunoregulatory effects. Consistent with a homeostatic role of endogenous Gal1, patients with recurrent pregnancy loss showed considerably lower levels of circulating Gal1 and had higher frequency of anti-Gal1 auto-Abs in their sera compared with fertile women. Thus, endogenous Gal1 confers immune privilege to human trophoblast cells by triggering a broad tolerogenic program with potential implications in threatened pregnancies.
    Glycobiology 06/2012; 22(10):1374-86. DOI:10.1093/glycob/cws104 · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kaposi’s sarcoma (KS), a multifocal vascular neoplasm linked to human herpesvirus-8 (HHV-8/KS-associated herpesvirus [KSHV]) infection, is the most common AIDS-associated malignancy. Clinical management of KS has proven to be challenging because of its prevalence in immunosuppressed patients and its unique vascular and inflammatory nature that is sustained by viral and host-derived paracrine-acting factors primarily released under hypoxic conditions. We show that interactions between the regulatory lectin galectin-1 (Gal-1) and specific target N-glycans link tumor hypoxia to neovascularization as part of the pathogenesis of KS. Expression of Gal-1 is found to be a hallmark of human KS but not other vascular pathologies and is directly induced by both KSHV and hypoxia. Interestingly, hypoxia induced Gal-1 through mechanisms that are independent of hypoxia-inducible factor (HIF) 1α and HIF-2α but involved reactive oxygen species–dependent activation of the transcription factor nuclear factor κB. Targeted disruption of Gal-1–N-glycan interactions eliminated hypoxia-driven angiogenesis and suppressed tumorigenesis in vivo. Therapeutic administration of a Gal-1–specific neutralizing mAb attenuated abnormal angiogenesis and promoted tumor regression in mice bearing established KS tumors. Given the active search for HIF-independent mechanisms that serve to couple tumor hypoxia to pathological angiogenesis, our findings provide novel opportunities not only for treating KS patients but also for understanding and managing a variety of solid tumors.
    Journal of Experimental Medicine 10/2012; 209(11):1985-2000. DOI:10.1084/jem.20111665 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1 (Gal1), an evolutionarily conserved glycan-binding protein, contributes to the creation of an immunosuppressed microenvironment at sites of tumor growth. In spite of considerable progress in elucidating its role in tumor-immune escape, the mechanisms underlying the inhibitory functions of Gal1 remain obscure. Here we investigated the contribution of tumor Gal1 to tumor growth, metastasis and immunosuppression in breast cancer. We found that the frequency of Gal1(+) cells in human breast cancer biopsies correlated positively with tumor grade, while specimens from patients with benign hyperplasia showed negative or limited Gal1 staining. To examine the pathophysiologic relevance of Gal1 in breast cancer, we used the metastatic mouse mammary tumor 4T1, which expresses and secretes substantial amounts of Gal1. Silencing Gal1 expression in this model induced a marked reduction in both tumor growth and the number of lung metastases. This effect was abrogated when mice were inoculated with wild-type (WT) 4T1 tumor cells in their contralateral flank, suggesting involvement of a systemic modulation of the immune response. Gal1 attenuation in 4T1 cells also reduced the frequency of CD4(+)CD25(+) Foxp3(+) regulatory T (T(reg)) cells within the tumor, draining lymph nodes, spleen and lung metastases. Further, it abrogated the immunosuppressive function of T(reg) cells and selectively lowered the expression of the T-cell regulatory molecule LAT (linker for activation of T cells) on these cells, disarming their suppressive activity. Taken together, our results offer a preclincal proof of concept that therapeutic targeting of Gal1 can overcome breast cancer-associated immunosuppression and can prevent metastatic disease.
    Cancer Research 11/2012; 73(3). DOI:10.1158/0008-5472.CAN-12-2418 · 9.28 Impact Factor
Show more