Recognition between a short unstructured peptide and a partially folded fragment leads to the thioredoxin fold sharing native-like dynamics.

Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
Proteins Structure Function and Bioinformatics (Impact Factor: 3.34). 01/2012; 80(5):1448-64. DOI: 10.1002/prot.24043
Source: PubMed

ABSTRACT Thioredoxins (TRXs) constitute attractive α/β scaffolds for investigating molecular recognition. The interaction between the recombinant fragment spanning the sequence 1-93 of full-length TRX (TRX1-93) and the synthetic peptide comprising residues 94-108 (TRX94-108), plus a C-terminal tyrosine tag (the numbering scheme used in entry pdb 2TRX is used throughout the article, two complementary moieties of E. coli TRX, brings about the consolidation of a native-like complex. Despite its reduced thermodynamic stability, this complex is able to acquire fine structural features remarkably similar to those characteristic of full-length TRX, namely, hydrodynamic behavior, assessed by diffusion-ordered spectroscopy (DOSY)-NMR; the pattern of secondary structure, as revealed by three-bond HNHα coupling constants and secondary shifts for Hα/CO/Cα/Cβ; native-like tertiary structural signatures revealed by near-UV circular dichroism (CD) spectroscopy. The complex exhibits a relaxation behavior compatible with that expected for a native-like structure. However, heteronuclear nuclear Overhauser effect (NOE)s reveal an enhanced dynamics for the complex by comparison with full-length TRX. Furthermore, higher R(2) values for residues 43-50 and 74-89 would likely result from an exchange process modulated by the peptide at the interface region. The slow kinetics of the consolidation reaction was followed by CD and real-time NMR. Equilibrium titration experiments by NMR yield a K(D) value of 1.4 ± 1.0 μM and a second low-affinity (>150 μM) binding event in the vicinity of the active site. Molecular dynamics simulations of both the isolated fragment TRX1-93 and the complex suggest the destabilization of α2 and α3 helical elements and the persistence of β-structure in the absence of TRX94-108. Altogether, structural and dynamic evidence presented herein points to the key role played by the C-terminal helix in establishing the overall fold. This critical switch module endows reduced TRX with the ability to act as a cooperative folding unit.

  • [Show abstract] [Hide abstract]
    ABSTRACT: NMR spectroscopy is one of the few biophysical methods that can provide atomic-level insight into the conformation of partially folded states and/or intermediates present along the protein folding pathway. Such studies are important not only within the context of the protein folding problem, but also to push forward the technique, due to the challenging nature of the systems studied. In fact, new NMR methods have been created, and applied, in an attempt to characterize the conformational features of the states along the folding pathway. Describing the structures along the folding landscape is of key importance to comprehend the folding reaction, design new proteins and to understand how several polypeptide chains are implicated in pathogenic amyloid states. The last advances in several approaches, which use NMR: (i) to monitor the protein folding pathway and/or, (ii) to characterize the structure of the intermediate states in such reaction are reviewed in this work.
    Archives of Biochemistry and Biophysics 09/2012; · 3.37 Impact Factor


Available from
Jun 6, 2014