Article

Exposure to Ionizing Radiation Causes Long-Term Increase in Serum Estradiol and Activation of PI3K-Akt Signaling Pathway in Mouse Mammary Gland

Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057-1468, USA.
International journal of radiation oncology, biology, physics (Impact Factor: 4.18). 02/2012; 84(2):500-7. DOI: 10.1016/j.ijrobp.2011.12.033
Source: PubMed

ABSTRACT Exposure to ionizing radiation is an established risk factor for breast cancer. Radiation exposure during infancy, childhood, and adolescence confers the highest risk. Although radiation is a proven mammary carcinogen, it remains unclear where it acts in the complex multistage process of breast cancer development. In this study, we investigated the long-term pathophysiologic effects of ionizing radiation at a dose (2 Gy) relevant to fractionated radiotherapy.
Adolescent (6-8 weeks old; n = 10) female C57BL/6J mice were exposed to 2 Gy total body γ-radiation, the mammary glands were surgically removed, and serum and urine samples were collected 2 and 12 months after exposure. Molecular pathways involving estrogen receptor-α (ERα) and phosphatidylinositol-3-OH kinase (PI3K)-Akt signaling were investigated by immunohistochemistry and Western blot.
Serum estrogen and urinary levels of the oncogenic estrogen metabolite (16αOHE1) were significantly increased in irradiated animals. Immunostaining for the cellular proliferative marker Ki-67 and cyclin-D1 showed increased nuclear accumulation in sections of mammary glands from irradiated vs. control mice. Marked increase in p85α, a regulatory sub-unit of the PI3K was associated with increase in Akt, phospho-Akt, phospho-BAD, phospho-mTOR, and c-Myc in irradiated samples. Persistent increase in nuclear ERα in mammary tissues 2 and 12 months after radiation exposure was also observed.
Taken together, our data not only support epidemiologic observations associating radiation and breast cancer but also, specify molecular events that could be involved in radiation-induced breast cancer.

2 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic (56)Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the (56)Fe radiation preferentially altered dipeptide metabolism. Furthermore, (56)Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.
    PLoS ONE 01/2014; 9(1):e87079. DOI:10.1371/journal.pone.0087079 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.
    The Journal of steroid biochemistry and molecular biology 01/2014; DOI:10.1016/j.jsbmb.2014.01.004 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While acute effects of toxic radiation doses on intestine are well established, we are yet to acquire a complete spectrum of sub-lethal radiation-induced chronic intestinal perturbations at the molecular level. We investigated persistent effects of a radiation dose (2 Gy) commonly used as a daily fraction in radiotherapy on oxidants and anti-oxidants, and autophagy pathways, which are interlinked processes affecting intestinal homeostasis. Six to eight weeks old C57BL/6J mice (n = 10) were exposed to 2 Gy �-ray. Mice were euthanized two or twelve months after radiation, intestine surgically removed, and flushed using sterile PBS. Parts of the intestine from jejunal–ilial region were fixed, frozen, or used for intestinal epithelial cell(IEC) isolation. While oxidant levels and mitochondrial status were assessed in isolated IEC, autophagy and oxidative stress related signaling pathways were probed in frozen and fixed samples using PCR-based expression arrays and immunoprobing. Radiation exposure caused significant alterations in the expression level of 26 autophagy and 17 oxidative stress related genes. Immunoblot results showed decreasedBeclin1 and LC3-II and increased p62, PI3K/Akt, and mTOR. Flow cytometry data showed increased oxidant production and compromised mitochondrial integrity in irradiated samples. Immunoprobingof intestinal sections showed increased 8-oxo-dG and nuclear PCNA, and decreased autophagosome marker LC3-II in IEC after irradiation. We show that sub-lethal radiation could persistently downregulate anti-oxidants and autophagy signaling, and upregulate oxidant production and proliferative signaling.Radiation-induced promotion of oxidative stress and downregulation of autophagy could work in tandem to alter intestinal functions and have implications for post-radiation chronic gastrointestinal diseases.
    The International Journal of Biochemistry & Cell Biology 10/2014; 57. DOI:10.1016/j.biocel.2014.10.022 · 4.24 Impact Factor