Deep annotation of mouse iso-miR and iso-moR variation

Neuroscience Research Institute and Department of Cellular Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
Nucleic Acids Research (Impact Factor: 8.81). 03/2012; 40(13):5864-75. DOI: 10.1093/nar/gks247
Source: PubMed

ABSTRACT With a dataset of more than 600 million small RNAs deeply sequenced from mouse hippocampal and staged sets of mouse cells that underwent reprogramming to induced pluripotent stem cells, we annotated the stem-loop precursors of the known miRNAs to identify isomoRs (miRNA-offset RNAs), loops, non-preferred strands, and guide strands. Products from both strands were readily detectable for most miRNAs. Changes in the dominant isomiR occurred among the cell types, as did switches of the preferred strand. The terminal nucleotide of the dominant isomiR aligned well with the dominant off-set sequence suggesting that Drosha cleavage generates most miRNA reads without terminal modification. Among the terminal modifications detected, most were non-templated mono- or di-nucleotide additions to the 3'-end. Based on the relative enrichment or depletion of specific nucleotide additions in an Ago-IP fraction there may be differential effects of these modifications on RISC loading. Sequence variation of the two strands at their cleavage sites suggested higher fidelity of Drosha than Dicer. These studies demonstrated multiple patterns of miRNA processing and considerable versatility in miRNA target selection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The optimal coordination of the transcriptional response of host cells to infection is essential for establishing appropriate immunological outcomes. In this context, the role of microRNAs (miRNAs) - important epigenetic regulators of gene expression - in regulating mammalian immune systems is increasingly well recognised. However, the expression dynamics of miRNAs, and that of their isoforms, in response to infection remains largely unexplored. Here, we characterized the genome-wide miRNA transcriptional responses of human dendritic cells, over time, to various mycobacteria differing in their virulence as well as to other bacteria outside the genus Mycobacterium, using small RNA-sequencing. We detected the presence of a core temporal response to infection, shared across bacteria, comprising 49 miRNAs, highlighting a set of miRNAs that may play an essential role in the regulation of basic cellular responses to stress. Despite such broadly shared expression dynamics, we identified specific elements of variation in the miRNA response to infection across bacteria, including a virulence-dependent induction of the miR-132/212 family in response to mycobacterial infections. We also found that infection has a strong impact on both the relative abundance of the miRNA hairpin arms and the expression dynamics of miRNA isoforms. That we observed broadly consistent changes in relative arm expression and isomiR distribution across bacteria suggests that this additional, internal layer of variability in miRNA responses represents an additional source of subtle miRNA-mediated regulation upon infection. Collectively, this study increases our understanding of the dynamism and role of miRNAs in response to bacterial infection, revealing novel features of their internal variability and identifying candidate miRNAs that may contribute to differences in the pathogenicity of mycobacterial infections.
    PLoS Genetics 03/2015; 11(3):e1005064. DOI:10.1371/journal.pgen.1005064 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs) in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test), we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE) of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.
    PLoS ONE 03/2015; 10(3):e0118856. DOI:10.1371/journal.pone.0118856 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The deep-sequencing of small RNAs has revealed that different numbers and proportions of miRNA variants called isomiRs are formed from single miRNA genes and that this effect is attributable mainly to imprecise cleavage by Drosha and Dicer. Factors that influence the degree of cleavage precision of Drosha and Dicer are under investigation, and their identification may improve our understanding of the mechanisms by which cells modulate the regulatory potential of miRNAs. In this study, we focused on the sequences and structural determinants of Drosha and Dicer cleavage sites, which may explain the generation of homogeneous miRNAs (in which a single isomiR strongly predominates) as well as the generation of heterogeneous miRNAs. Using deep-sequencing data for small RNAs, we demonstrate that the generation of homogeneous miRNAs requires more sequence constraints at the cleavage sites than the formation of heterogeneous miRNAs. Additionally, our results indicate that specific Drosha cleavage sites have more sequence determinants in miRNA precursors than specific cleavage sites for Dicer and that secondary structural motifs in the miRNA precursors influence the precision of Dicer cleavage. Together, we present the sequence and structural features of Drosha and Dicer cleavage sites that influence the heterogeneity of the released miRNAs.
    International Journal of Molecular Sciences 04/2015; 16(4). DOI:10.3390/ijms16048110 · 2.34 Impact Factor