Article

MEDIC: a practical disease vocabulary used at the Comparative Toxicogenomics Database.

Department of Bioinformatics, The Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
Database The Journal of Biological Databases and Curation (Impact Factor: 4.2). 01/2012; 2012:bar065. DOI: 10.1093/database/bar065
Source: PubMed

ABSTRACT The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the effects of environmental chemicals on human health. CTD biocurators manually curate a triad of chemical-gene, chemical-disease and gene-disease relationships from the scientific literature. The CTD curation paradigm uses controlled vocabularies for chemicals, genes and diseases. To curate disease information, CTD first had to identify a source of controlled terms. Two resources seemed to be good candidates: the Online Mendelian Inheritance in Man (OMIM) and the 'Diseases' branch of the National Library of Medicine's Medical Subject Headers (MeSH). To maximize the advantages of both, CTD biocurators undertook a novel initiative to map the flat list of OMIM disease terms into the hierarchical nature of the MeSH vocabulary. The result is CTD's 'merged disease vocabulary' (MEDIC), a unique resource that integrates OMIM terms, synonyms and identifiers with MeSH terms, synonyms, definitions, identifiers and hierarchical relationships. MEDIC is both a deep and broad vocabulary, composed of 9700 unique diseases described by more than 67 000 terms (including synonyms). It is freely available to download in various formats from CTD. While neither a true ontology nor a perfect solution, this vocabulary has nonetheless proved to be extremely successful and practical for our biocurators in generating over 2.5 million disease-associated toxicogenomic relationships in CTD. Other external databases have also begun to adopt MEDIC for their disease vocabulary. Here, we describe the construction, implementation, maintenance and use of MEDIC to raise awareness of this resource and to offer it as a putative scaffold in the formal construction of an official disease ontology. DATABASE URL: http://ctd.mdibl.org/voc.go?type=disease.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Model organisms are widely used for understanding basic biology, and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models, and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community.
    Scientific Reports 05/2013; 3:1802. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of ontologies to standardize biological data and facilitate comparisons among datasets has steadily grown as the complexity and amount of available data have increased. Despite the numerous ontologies available, one area currently lacking a robust ontology is the description of vertebrate traits. A trait is defined as any measurable or observable characteristic pertaining to an organism or any of its substructures. While there are several ontologies to describe entities and processes in phenotypes, diseases, and clinical measurements, one has not been developed for vertebrate traits; the Vertebrate Trait Ontology (VT) was created to fill this void.Description: Significant inconsistencies in trait nomenclature exist in the literature, and additional difficulties arise when trait data are compared across species. The VT is a unified trait vocabulary created to aid in the transfer of data within and between species and to facilitate investigation of the genetic basis of traits. Trait information provides a valuable link between the measurements that are used to assess the trait, the phenotypes related to the traits, and the diseases associated with one or more phenotypes. Because multiple clinical and morphological measurements are often used to assess a single trait, and a single measurement can be used to assess multiple physiological processes, providing investigators with standardized annotations for trait data will allow them to investigate connections among these data types. The annotation of genomic data with ontology terms provides unique opportunities for data mining and analysis. Links between data in disparate databases can be identified and explored, a strategy that is particularly useful for cross-species comparisons or in situations involving inconsistent terminology. The VT provides a common basis for the description of traits in multiple vertebrate species. It is being used in the Rat Genome Database and Animal QTL Database for annotation of QTL data for rat, cattle, chicken, swine, sheep, and rainbow trout, and in the Mouse Phenome Database to annotate strain characterization data. In these databases, data are also cross-referenced to applicable terms from other ontologies, providing additional avenues for data mining and analysis. The ontology is available at http://bioportal.bioontology.org/ontologies/50138.
    Journal of biomedical semantics. 08/2013; 4(1):13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the central role of diseases in biomedical research, there have been much fewer attempts to automatically determine which diseases are mentioned in a text - the task of disease name normalization - compared with other normalization tasks in biomedical text mining research. In this article we introduce the first machine learning approach for disease name normalization (DNorm), using the NCBI Disease corpus and the MEDIC vocabulary, which combines MeSH® and OMIM. Our method is a high-performing and mathematically principled framework for learning similarities between mentions and concept names directly from training data. The technique is based on pairwise learning to rank, which has not previously been applied to the normalization task but has proven successful in very large optimization problems for information retrieval. We compare our method to several techniques based on lexical normalization and matching, MetaMap, and Lucene. Our algorithm achieves 0.782 micro-averaged F-measure and 0.809 macro-averaged F-measure, an increase over the highest performing baseline method of 0.121 and 0.098, respectively. The source code for DNorm is available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm, along with a web-based demonstration and links to the NCBI Disease Corpus. Results on PubMed abstracts are available in PubTator: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator.
    Bioinformatics 08/2013; · 5.47 Impact Factor

Full-text

View
0 Downloads
Available from