Heparin-Modified Small-Diameter Nanofibrous Vascular Grafts

Department of Bioengineering, University of California, Berkeley, CA 94720USA.
IEEE transactions on nanobioscience (Impact Factor: 2.31). 03/2012; 11(1):22-7. DOI: 10.1109/TNB.2012.2188926
Source: PubMed


Due to high incidence of vascular bypass procedures, an unmet need for suitable vessel replacements exists, especially for small-diameter vascular grafts. Here we produced 1-mm diameter vascular grafts with nanofibrous structure via electrospinning, and successfully modified the nanofibers by the conjugation of heparin using di-amino-poly(ethylene glycol) (PEG) as a linker. Antithrombogenic activity of these heparin-modified scaffolds was confirmed in vitro. After 1 month implantation using a rat common carotid artery bypass model, heparin-modified grafts exhibited 85.7% patency, versus 57.1% patency of PEGylated grafts and 42.9% patency of untreated grafts. Post-explant analysis of patent grafts showed complete endothelialization of the lumen and neovascularization around the graft. Smooth muscle cells were found in the surrounding neo-tissue. In addition, greater cell infiltration was observed in heparin-modified grafts. These findings suggest heparin modification may play multiple roles in the function and remodeling of nanofibrous vascular grafts, by preventing thrombosis and maintaining patency, and by promoting cell infiltration into the three-dimensional nanofibrous structure for remodeling.

1 Follower
21 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prosthetic vascular grafts do not mimic the antithrombogenic properties of native blood vessels and therefore have higher rates of complications that involve thrombosis and restenosis. We developed an approach for grafting bioactive heparin, a potent anticoagulant glycosaminoglycan, to the lumen of ePTFE vascular grafts to improve their interactions with blood and vascular cells. Heparin was bound to aminated poly(1,8-octanediol-co-citrate) (POC) via its carboxyl functional groups onto POC-modified ePTFE grafts. The bioactivity and stability of the POC-immobilized heparin (POC-Heparin) were characterized via platelet adhesion and clotting assays. The effects of POC-Heparin on the adhesion, viability and phenotype of primary endothelial cells (EC), blood outgrowth endothelial cells (BOECs) obtained from endothelial progenitor cells (EPCs) isolated from human peripheral blood, and smooth muscle cells were also investigated. POC-Heparin grafts maintained bioactivity under physiologically relevant conditions in vitro for at least one month. Specifically, POC-Heparin-coated ePTFE grafts significantly reduced platelet adhesion and inhibited whole blood clotting kinetics. POC-Heparin supported EC and BOEC adhesion, viability, proliferation, NO production, and expression of endothelial cell-specific markers von Willebrand factor (vWF) and vascular endothelial-cadherin (VE-cadherin). Smooth muscle cells cultured on POC-Heparin showed increased expression of α-actin and decreased cell proliferation. This approach can be easily adapted to modify other blood contacting devices such as stents where antithrombogenicity and improved endothelialization are desirable properties.
    Biomaterials 10/2012; 34(1). DOI:10.1016/j.biomaterials.2012.09.046 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering of small-diameter blood vessels is still challenging because of restenosis and burst. To prevent thrombosis, rapid endothelialization along the lumen of grafts is intended, followed by proliferation of vascular smooth muscle cells (VSMCs) around the exterior for compliance. To this goal, two modified coaxial electrospinning techniques were developed to encapsulate vascular endothelial growth factor (VEGF) and platelet-derived growth factor-bb (PDGF), respectively, to regulate proliferation of vascular endothelial cells (VECs) and VSMCs. Release profiles, in vitro cell proliferation and in vivo implantation of double-layered electrospun membranes were investigated, and what made it special was the electrospun membranes were composed of chitosan hydrogel/poly(ethylene glycol)-b-poly(l-lactide-co-caprolactone) (PELCL) electrospun membrane loaded with VEGF as the inner layer and emulsion/PELCL electrospun membrane-loaded PDGF as the outer. It was found that dual-release of VEGF and PDGF could accelerate VEC proliferation in the first 6 days, and modulate slow VSMC proliferation in the initial 3 days whereas generate rapid proliferation after day 6, which is of great benefit to blood vessel regeneration. Four weeks of in vivo replacement of rabbit carotid artery demonstrated that VECs and VSMCs developed on the lumen and exterior of vascular grafts, respectively, and no thrombus or burst appeared. It was concluded that dual-delivery of VEGF and PDGF by the modified electrospun membranes could facilitate revascularization.
    Biomaterials 01/2013; 34(9). DOI:10.1016/j.biomaterials.2012.12.005 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biocompatible PCL polymer nanofiber mediated sustained release of hydrophilic drug and applicability as transdermal delivery system is attempted. This new attempt to investigate water soluble vitamin delivery with hydrophobic polymer nanofiber sustained the release of the vitamin and the method is suited for the transdermal patch applications. The drug loaded fibers were characterised with SEM for morphology, porometer for pore size measurements, mechanical strength calculation and FT-IR for drug load characterisation. The contact angle measurement showed surface wettability and controlled release of drug was quantified with UV absorption measurements. To further enhance the release of vitamin, the polymer fiber was plasma treated at different time intervals and made hydrophilic gradually. Since the increased surface area and drug encapsulation in nano-reservoirs can able to release drug in small quantities and in a sustained manner we attempted the release of the energy supplement with nanofibrous delivery mode.
    International Journal of Pharmaceutics 01/2013; 444(1-2). DOI:10.1016/j.ijpharm.2013.01.040 · 3.65 Impact Factor
Show more

Similar Publications


21 Reads
Available from