Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke.

Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
Medicinal Research Reviews (Impact Factor: 9.58). 03/2012; DOI: 10.1002/med.21251
Source: PubMed

ABSTRACT Eicosanoids are biologically active lipids in both physiologic and pathophysiologic situations. These mediators rapidly generate at sites of inflammation and act through specific receptors that following the generation of a signal transduction cascade, lead to coordinated cellular responses to specific stimuli. Prostanoids, that is, prostaglandins and thromboxane A(2) , are active products of the cyclooxygenase pathway, while leukotrienes and lipoxins derive from the lipoxygenase pathway. In addition, a complex family of prostaglandin isomers called isoprostanes is derived as free-radical products of oxidative metabolism. While there is a wide consensus on the importance of the balance between proaggregating (thromboxane A(2) ) and antiaggregating (prostacyclin) cyclooxygenase products in cardiovascular homeostasis, an increasing body of evidence suggests a key role also for other eicosanoids generated by lipoxygenases, epoxygenases, and nonenzymatic pathways in cardiovascular diseases. This intricate network of lipid mediators is unique considering that from a single precursor, arachidonic acid, may derive an array of bioproducts that interact within each other synergizing or, more often, behaving as functional antagonists.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obstructive sleep apnea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease resulting from intermittent hypoxia (IH)-induced inflammation. Cyclooxygenase (COX)-formed prostanoids mediate the inflammatory response, and regulate blood pressure and cerebral blood flow (CBF), but their role in blood pressure and CBF responses to IH is unknown. Therefore, this study's objective was to determine the role of prostanoids in cardiovascular and cerebrovascular responses to IH. Twelve healthy, male participants underwent three, 6-hour IH exposures. For 4 days before each IH exposure, participants ingested a placebo, indomethacin (nonselective COX inhibitor), or Celebrex(®) (selective COX-2 inhibitor) in a double-blind, randomized, crossover study design. Pre- and post-IH blood pressure, CBF, and urinary prostanoids were assessed. Additionally, blood pressure and urinary prostanoids were assessed in newly diagnosed, untreated OSA patients (n=33). Nonselective COX inhibition increased pre-IH blood pressure (P≤0.04) and decreased pre-IH CBF (P=0.04) while neither physiological variable was affected by COX-2 inhibition (P≥0.90). Post-IH, MAP was elevated (P≤0.05) and CBF was unchanged with placebo and nonselective COX inhibition. Selective COX-2 inhibition abrogated the IH-induced MAP increase (P=0.19), but resulted in lower post-IH CBF (P=0.01). Prostanoids were unaffected by IH, except prostaglandin E2 was elevated with the placebo (P=0.02). Finally, OSA patients had elevated blood pressure (P≤0.4) and COX-1 formed thromboxane A2 concentrations (P=0.02). COX-2 and COX-1 have divergent roles in modulating vascular responses to acute and chronic IH. Moreover, COX-1 inhibition may mitigate cardiovascular and cerebrovascular morbidity in OSA. Unique identifier: NCT01280006.
    Journal of the American Heart Association. 01/2014; 3(3):e000875.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endogenous ligands for the leukotriene, lipoxin and oxoeicosanoid receptors are bioactive products produced by the action of the lipoxygenase family of enzymes. The leukotriene (LT) receptors are either activated by LTB4 (BLT1 and BLT2 ) or cysteinyl-LTs (CysLT1 and CysLT2 ), whereas oxoeicosanoids exert their action through the OXE receptor. In contrast to these pro-inflammatory mediators, the lipoxin (LX) A4 transduces responses associated with the resolution of inflammation through the receptor FPR2/ALX (ALX/FPR2). The aim of the present review is to give a state of the field on these receptors, with focus on recent important findings. For example, BLT1 receptor signaling in cancer and the dual role of the BLT2 receptor in pro- and anti-inflammation have added more complexity to lipid mediator signaling. Furthermore, a cross-talk between the CysLT and P2Y receptor systems has been described, and also the presence of novel receptors for cysteinyl-LTs, such as GPR17 and GPR99. Finally, lipoxygenase metabolites derived from omega-3 essential polyunsaturated referred to as resolvins activate the receptors GPR32 and ChemR23. In conclusion, the receptors for the lipoxygenase products make up a sophisticated and tightly controlled system of endogenous pro- and anti-inflammatory signaling in physiology and pathology.
    British Journal of Pharmacology 03/2014; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukotriene B4 (LTB4) has been associated with the initiation and progression of atherosclerosis and abdominal aortic aneurysm (AAA) formation. However, associations of LTB4 levels with tissue characteristics and adverse clinical outcome of advanced atherosclerosis and AAA are scarcely studied. We hypothesized that LTB4 levels are associated with a vulnerable plaque phenotype and adverse clinical outcome. Furthermore, that LTB4 levels are associated with inflammatory AAA and adverse clinical outcome. Atherosclerotic plaques and AAA specimens were selected from two independent databases for LTB4 measurements. Plaques were isolated during carotid endarterectomy from asymptomatic (n = 58) or symptomatic (n = 317) patients, classified prior to surgery. LTB4 levels were measured without prior lipid extraction and levels were corrected for protein content. LTB4 levels were related to plaque phenotype, baseline patient characteristics and clinical outcome within three years following surgery. Seven non-diseased mammary artery specimens served as controls. AAA specimens were isolated during open repair, classified as elective (n = 189), symptomatic (n = 29) or ruptured (n = 23). LTB4 levels were measured similar to the plaque measurements and were related to tissue characteristics, baseline patient characteristics and clinical outcome. Twenty-six non-diseased aortic specimens served as controls. LTB4 levels corrected for protein content were not significantly associated with histological characteristics specific for vulnerable plaques or inflammatory AAA as well as clinical presentation. Moreover, it could not predict secondary manifestations independently investigated in both databases. However, LTB4 levels were significantly lower in controls compared to plaque (p = 0.025) or AAA (p = 0.017). LTB4 levels were not associated with a vulnerable plaque phenotype or inflammatory AAA or clinical presentation. This study does not provide supportive evidence for a role of LTB4 in atherosclerotic plaque destabilization or AAA expansion. However, these data should be interpreted with care, since LTB4 measurements were performed without prior lipid extractions.
    PLoS ONE 01/2014; 9(1):e86522. · 3.53 Impact Factor


Available from
May 28, 2014