Article

Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease

Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
Behavioural brain research (Impact Factor: 3.39). 03/2012; 231(1):92-6. DOI: 10.1016/j.bbr.2012.03.004
Source: PubMed

ABSTRACT Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder resulting from deficiency of branched-chain α-keto acid dehydrogenase complex leading to branched chain amino acids (BCAA) leucine, isoleucine, and valine accumulation as well as their corresponding transaminated branched-chain α-keto acids. MSUD patients present neurological dysfunction and cognitive impairment. Here, we investigated whether acute and chronic administration of a BCAA pool causes impairment of acquisition and retention of avoidance memory in young rats. We have used two administration protocols. Acute administration consisted of three subcutaneous administrations of the BCAA pool (15.8 μL/g body weight at 1-h intervals) containing 190 mmol/L leucine, 59 mmol/L isoleucine, and 69 mmol/L valine or saline solution (0.85% NaCl; control group) in 30 days old Wistar rats. Chronic administration consisted of two subcutaneous administrations of BCAA pool for 21 days in 7 days old Wistar rats. N-acetylcysteine (NAC; 20 mg/kg) and deferoxamine (DFX; 20 mg/kg) co administration influence on behavioral parameters after chronic BCAA administration was also investigated. BCAA administration induced long-term memory impairment in the inhibitory avoidance and CMIA (continuous multiple-trials step-down inhibitory avoidance) tasks whereas with no alterations in CMIA retention memory. Inhibitory avoidance alterations were prevented by NAC and DFX. BCAA administration did not impair the neuropsychiatric state, muscle tone and strength, and autonomous function evaluated with the SHIRPA (SmithKline/Harwell/ImperialCollege/RoyalHospital/Phenotype Assessment) protocol. Taken together, our results indicate that alterations of motor activity or emotionality probably did not contribute to memory impairment after BCAA administration and NAC and DFX effects suggest that cognition impairment after BCAA administration may be caused by oxidative brain damage.

1 Follower
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maple syrup urine disease (MSUD) is caused by an inborn error in metabolism resulting from a deficiency in the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. High levels of BCAAs are associated with neurological dysfunction and the role of pro- and mature brain-derived neurotrophic factor (BDNF) in the neurological dysfunction of MSUD is still unclear. Thus, in the present study we investigated the effect of an acute BCAA pool administration on BDNF levels and on the pro-BDNF cleavage-related proteins S100A10 and tissue plasminogen activator (tPA) in rat brains. Our results demonstrated that acute Hyper-BCAA (H-BCAA) exposure during the early postnatal period increases pro-BDNF and total-BDNF levels in the hippocampus and striatum. Moreover, tPA levels were significantly decreased, without modifications in the tPA transcript levels in the hippocampus and striatum. On the other hand, the S100A10 mRNA and S100A10 protein levels were not changed in the hippocampus and striatum. In the 30-day-old rats, we observed increased pro-BDNF, total-BDNF and tPA levels only in the striatum, whereas the tPA and S100A10 mRNA expression and the immunocontent of S100A10 were not altered. In conclusion, we demonstrated that acute H-BCAA administration increases the pro-BDNF/total-BDNF ratio and decreases the tPA levels in animals, suggesting that the BCAA effect may depend, at least in part, on changes in BDNF post-translational processing.
    Neurochemical Research 02/2015; 40(5). DOI:10.1007/s11064-015-1541-1 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to increase harmonization of care and enable outcome studies, the Genetic Metabolic Dietitians International (GMDI) and the Southeast Regional Newborn Screening and Genetics Collaborative (SERC) are partnering to develop nutrition management guidelines for inherited metabolic disorders (IMD) using a model combining both evidence- and consensus-based methodology. The first guideline to be completed is for maple syrup urine disease (MSUD). This report describes the methodology used in its development: formulation of five research questions; review, critical appraisal and abstraction of peer-reviewed studies and unpublished practice literature; and expert input through Delphi surveys and a nominal group process. This report includes the summary statements for each research question and the nutrition management recommendations they generated. Each recommendation is followed by a standardized rating based on the strength of the evidence and consensus used. The application of technology to build the infrastructure for this project allowed transparency during development of this guideline and will be a foundation for future guidelines. Online open access of the full, published guideline allows utilization by health care providers, researchers, and collaborators who advise, advocate and care for individuals with MSUD and their families. There will be future updates as warranted by developments in research and clinical practice.
    Molecular Genetics and Metabolism 05/2014; 112(3). DOI:10.1016/j.ymgme.2014.05.006 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maple syrup urine disease (MSUD) is a metabolic disease caused by a deficiency in the branched-chain α-keto acid dehydrogenase complex, leading to the accumulation of branched-chain keto acids and their corresponding branched-chain amino acids (BCAA) in patients. Treatment involves protein-restricted diet and the supplementation with a specific formula containing essential amino acids (except BCAA) and micronutrients, in order to avoid the appearance of neurological symptoms. Although the accumulation of toxic metabolites is associated to appearance of symptoms, the mechanisms underlying the brain damage in MSUD remain unclear, and new evidence has emerged indicating that oxidative stress contributes to this damage. In this context, this review addresses some of the recent findings obtained from cells lines, animal studies, and from patients indicating that oxidative stress is an important determinant of the pathophysiology of MSUD. Recent works have shown that the metabolites accumulated in the disease induce morphological alterations in C6 glioma cells through nitrogen reactive species generation. In addition, several works demonstrated that the levels of important antioxidants decrease in animal models and also in MSUD patients (what have been attributed to protein-restricted diets). Also, markers of lipid, protein, and DNA oxidative damage have been reported in MSUD, probably secondary to the high production of free radicals. Considering these findings, it is well-established that oxidative stress contributes to brain damage in MSUD, and this review offers new perspectives for the prevention of the neurological damage in MSUD, which may include the use of appropriate antioxidants as a novel adjuvant therapy for patients.
    Cellular and Molecular Neurobiology 11/2013; DOI:10.1007/s10571-013-0002-0 · 2.20 Impact Factor