Ballistic and non-ballistic gas flow through ultrathin nanopores.

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA.
Nanotechnology (Impact Factor: 3.67). 04/2012; 23(14):145706. DOI: 10.1088/0957-4484/23/14/145706
Source: PubMed

ABSTRACT We show that ultrathin porous nanocrystalline silicon membranes exhibit gas permeance that is several orders of magnitude higher than other membranes. Using these membranes, gas flow obeying Knudsen diffusion has been studied in pores with lengths and diameters in the tens of nanometers regime. The components of the flow due to ballistic transport and transport after reflection from the pore walls were separated and quantified as a function of pore diameter. These results were obtained in pores made in silicon. We demonstrate that changing the pore interior to carbon leads to flow enhancement resulting from a change in the nature of molecule-pore wall interactions. This result confirms previously published flow enhancement results obtained in carbon nanotubes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assays for initiating, controlling and studying endothelial cell behavior and blood vessel formation have applications in developmental biology, cancer and tissue engineering. In vitro vasculogenesis models typically combine complex three-dimensional gels of extracellular matrix proteins with other stimuli like growth factor supplements. Biomaterials with unique micro- and nanoscale features may provide simpler substrates to study endothelial cell morphogenesis. In this work, patterns of nanoporous, nanothin silicon membranes (porous nanocrystalline silicon, or pnc-Si) are fabricated to control the permeability of an endothelial cell culture substrate. Permeability on the basal surface of primary and immortalized endothelial cells causes vacuole formation and endothelial organization into capillary-like structures. This phenomenon is repeatable, robust and controlled entirely by patterns of free-standing, highly-permeable pnc-Si membranes. Pnc-Si is a new biomaterial with precisely defined micro- and nanoscale features that can be used as a unique in vitro platform to study endothelial cell behavior and vasculogenesis.
    Acta Biomaterialia 11/2014; · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers were replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) were tested under different annealing temperatures. Generally the pore size, pore density and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. We hypothesize that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.
    Small 03/2014; · 7.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Porous nanocrystalline silicon (pnc-Si) membranes are a new class of membrane material with promising applications in biological separations. Pores are formed in a silicon film sandwiched between nm thick silicon dioxide layers during rapid thermal annealing. Controlling pore size is critical in the size-dependent separation applications. In this work, we systematically studied the influence of the silicon dioxide capping layers on pnc-Si membranes. Even a single nm thick top oxide layer is enough to switch from agglomeration to pore formation after annealing. Both the pore size and porosity increase with the thickness of the top oxide, but quickly reach a plateau after 10 nm of oxide. The bottom oxide layer acts as a barrier layer to prevent the a-Si film from undergoing homo-epitaxial growth during annealing. Both the pore size and porosity decrease as the thickness of the bottom oxide layer increases to 100 nm. The decrease of the pore size and porosity is correlated with the increased roughness of the bottom oxide layer, which hinders nanocrystal nucleation and nanopore formation.
    Nanotechnology 02/2015; 26(5):055706. · 3.67 Impact Factor


Available from
Jun 6, 2014