Article

Evidence for a double dissociation of articulatory rehearsal and non-articulatory maintenance of phonological information in human verbal working memory.

Department of Psychiatry and Psychotherapy, Center for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany.
Neuropsychobiology (Impact Factor: 2.37). 02/2012; 65(3):133-40. DOI: 10.1159/000332335
Source: PubMed

ABSTRACT Recent functional neuroimaging studies have provided evidence that human verbal working memory is represented by two complementary neural systems, a left lateralized premotor-parietal network implementing articulatory rehearsal and a presumably phylogenetically older bilateral anterior-prefrontal/inferior-parietal network subserving non-articulatory maintenance of phonological information. In order to corroborate these findings from functional neuroimaging, we performed a targeted behavioural study in patients with very selective and circumscribed brain lesions to key regions suggested to support these different subcomponents of human verbal working memory.
Within a sample of over 500 neurological patients assessed with high-resolution structural magnetic resonance imaging, we identified 2 patients with corresponding brain lesions, one with an isolated lesion to Broca's area and the other with a selective lesion bilaterally to the anterior middle frontal gyrus. These 2 patients as well as groups of age-matched healthy controls performed two circuit-specific verbal working memory tasks. In this way, we systematically assessed the hypothesized selective behavioural effects of these brain lesions on the different subcomponents of verbal working memory in terms of a double dissociation.
Confirming prior findings, the lesion to Broca's area led to reduced performance under articulatory rehearsal, whereas the non-articulatory maintenance of phonological information was unimpaired. Conversely, the bifrontopolar brain lesion was associated with impaired non-articulatory phonological working memory, whereas performance under articulatory rehearsal was unaffected.
The present experimental neuropsychological study in patients with specific and circumscribed brain lesions confirms the hypothesized double dissociation of two complementary brain systems underlying verbal working memory in humans. In particular, the results demonstrate the functional relevance of the anterior prefrontal cortex for non-articulatory maintenance of phonological information and, in this way, provide further support for the evolutionary-based functional-neuroanatomical model of human working memory.

0 Bookmarks
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of studies have already shown that modulating cortical activity by means of transcranial direct current stimulation (tDCS) improves noun or verb naming in aphasic patients. However, it is not yet clear whether these effects are equally obtained through stimulation over the frontal or the temporal regions. In the present study, the same group of aphasic subjects participated in two randomized double-blind experiments involving two intensive language treatments for their noun and verb retrieval difficulties. During each training, each subject was treated with tDCS (20 min, 1 mA) over the left hemisphere in three different conditions: anodic tDCS over the temporal areas, anodic tDCS over the frontal areas, and sham stimulation, while they performed a noun and an action naming tasks. Each experimental condition was run in five consecutive daily sessions over three weeks with 6 days of intersession interval. The order of administration of the two language trainings was randomly assigned to all patients. Overall, with respect to the other two conditions, results showed a significant greater improvement in noun naming after stimulation over the temporal region, while verb naming recovered significantly better after stimulation of the frontal region. These improvements persisted at one month after the end of each treatment suggesting a long-term effect on recovery of the patients' noun and verb difficulties. These data clearly suggest that the mechanisms of recovery for naming can be segregated coupling tDCS with an intensive language training.
    Frontiers in Human Neuroscience 01/2013; 7:269. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have demonstrated that transcranial direct current stimulation (tDCS) modulates cortical activity in the human brain. In the language domain, it has already been shown that during a naming task tDCS reduces vocal reaction times in healthy individuals and speeds up the recovery process in left brain-damaged aphasic subjects. In this study, we wondered whether tDCS would influence the ability to articulate tongue twisters during a repetition task. Three groups of ten healthy individuals were asked to repeat a list of tongue twisters in three different stimulation conditions: one group performed the task during anodal tDCS (20min, 2mA) over the left frontal region; a second group during cathodal tDCS delivered over the same region; and, in a third group, sham stimulation was applied. Accuracy and vocal reaction times in repeating each tongue twister before, during and one hour after the stimulation were recorded. Participants were more accurate and faster at repeating the stimuli during anodal tDCS than at baseline, while cathodal tDCS significantly reduced their performance in terms of accuracy and reaction times. No significant differences were observed among the three time points during the sham condition. We believe that these data clearly confirm that the left frontal region is critically involved in the process of speech repetition. They are also in line with recent evidence suggesting that frontal tDCS might be used as a therapeutic tool in patients suffering from articulatory deficits.
    Neuroscience 10/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric "cognitive-emotional" interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.
    European Archives of Psychiatry and Clinical Neuroscience 08/2014; · 3.36 Impact Factor