Article

Rho-kinase regulates adhesive and mechanical mechanisms of pulmonary recruitment of neutrophils in abdominal sepsis.

Department of Clinical Sciences, Section of Surgery, Malmö, Lund University, 20502 Malmö, Sweden.
European journal of pharmacology (Impact Factor: 2.59). 02/2012; 682(1-3):181-7. DOI: 10.1016/j.ejphar.2012.02.022
Source: PubMed

ABSTRACT We hypothesized that Rho-kinase signaling plays a role in mechanical and adhesive mechanisms of neutrophil accumulation in lung. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 prior to cecal ligation and puncture (CLP). Lung levels of myeloperoxidase (MPO) and histological tissue damage were determined 6h and 24h after CLP. Expression of Mac-1 and F-actin formation in neutrophils were quantified by using flow cytometry 6h after CLP. Mac-1 expression and F-actin formation were also determined in isolated neutrophils up to 3h after stimulation with CXCL2. Labeled and activated neutrophils co-incubated with Y-27632, an anti-Mac-1 antibody and cytochalasin B were adoptively transferred to CLP mice. Y-27632 reduced the CLP-induced pulmonary injury and MPO activity as well as Mac-1 on neutrophils. Neutrophil F-actin formation peaked at 6h and returned to baseline levels 24h after CLP induction. Rho-kinase inhibition decreased CLP-provoked F-actin formation in neutrophils. CXCL2 rapidly increased Mac-1 expression and F-actin formation in neutrophils. Co-incubation with Y-27632 abolished CXCL2-induced Mac-1 up-regulation and formation of F-actin in neutrophils. Notably, co-incubation with cytochalasin B inhibited formation of F-actin but did not reduce Mac-1 expression on activated neutrophils. Adoptive transfer experiments revealed that co-incubation of neutrophils with the anti-Mac-1 antibody or cytochalasin B significantly decreased pulmonary accumulation of neutrophils in septic mice. Our data show that targeting Rho-kinase effectively reduces neutrophil recruitment and tissue damage in abdominal sepsis. Moreover, these findings demonstrate that Rho-kinase-dependent neutrophil accumulation in septic lung injury is regulated by both adhesive and mechanical mechanisms.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether the carbon monoxide (CO)-releasing molecules (CORM)-liberated CO suppress inflammatory responses in the small intestine of septic mice. The C57BL/6 mice (male, n = 36; weight 20 ± 2 g) were assigned to four groups in three respective experiments. Sepsis in mice was induced by cecal ligation and puncture (CLP) (24 h). Tricarbonyldichlororuthenium (II) dimer (CORM-2) (8 mg/kg, i.v.) was administrated immediately after induction of CLP. The levels of inflammatory cytokines [interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)] in tissue homogenates were measured with enzyme-linked immunosorbent assay. The levels of malondialdehyde (MDA) in the tissues were determined. The levels of nitric oxide (NO) in tissue homogenate were measured and the expression levels of intercellular adhesion molecule 1 (ICAM-1) and inducible nitric oxide synthase (iNOS) in the small intestine were also assessed. NO and IL-8 levels in the supernatants were determined after the human adenocarcinoma cell line Caco-2 was stimulated by lipopolysaccharide (LPS) (10 g/mL) for 4 h in vitro. At 24 h after CLP, histological analysis showed that the ileum and jejunum from CLP mice induced severe edema and sloughing of the villous tips, as well as infiltration of inflammatory cells into the mucosa. Semi-quantitative analysis of histological samples of ileum and jejunum showed that granulocyte infiltration in the septic mice was significantly increased compared to that in the sham group. Administration of CORM-2 significantly decreased granulocyte infiltration. At 24 h after CLP, the tissue MDA levels in the mid-ileum and mid-jejunum significantly increased compared to the sham animals (103.68 ± 23.88 nmol/mL vs 39.66 ± 8.23 nmol/mL, 89.66 ± 9.98 nmol/mL vs 32.32 ± 7.43 nmol/mL, P < 0.01). In vitro administration of CORM-2, tissue MDA levels were significantly decreased (50.65 ± 11.46 nmol/mL, 59.32 ± 6.62 nmol/mL, P < 0.05). Meanwhile, the tissue IL-1β and TNF-α levels in the mid-ileum significantly increased compared to the sham animals (6.66 ± 1.09 pg/mL vs 1.67 ± 0.45 pg/mL, 19.34 ± 3.99 pg/mL vs 3.98 ± 0.87 pg/mL, P < 0.01). In vitro administration of CORM-2, tissue IL-1β and TNF-α levels were significantly decreased (3.87 ± 1.08 pg/mL, 10.45 ± 2.48 pg/mL, P < 0.05). The levels of NO in mid-ileum and mid-jejunum tissue homogenate were also decreased (14.69 ± 2.45 nmol/mL vs 24.36 ± 2.97 nmol/mL, 18.47 ± 2.47 nmol/mL vs 27.33 ± 3.87 nmol/mL, P < 0.05). The expression of iNOS and ICAM-1 in the mid-ileum of septic mice at 24 h after CLP induction significantly increased compared to the sham animals. In vitro administration of CORM-2, expression of iNOS and ICAM-1 were significantly decreased. In parallel, the levels of NO and IL-8 in the supernatants of Caco-2 stimulated by LPS was markedly decreased in CORM-2-treated Caco-2 cells (2.22 ± 0.12 nmol/mL vs 6.25 ± 1.69 nmol/mL, 24.97 ± 3.01 pg/mL vs 49.45 ± 5.11 pg/mL, P < 0.05). CORM-released CO attenuates the inflammatory cytokine production (IL-1β and TNF-α), and suppress the oxidative stress in the small intestine during sepsis by interfering with protein expression of ICAM-1 and iNOS.
    World Journal of Gastroenterology 10/2012; 18(40):5719-28. · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The signaling mechanisms controlling organ damage in the pancreas in severe acute pancreatitis (AP) remain elusive. Herein, we examined the role of farnesyltransferase signaling in AP. Pancreatitis was provoked by the infusion of taurocholate into the pancreatic duct in C57BL/6 mice. Animals were treated with a farnesyltransferase inhibitor FTI-277 (25 mg/kg) before pancreatitis induction. FTI-277 decreased the blood amylase levels, pancreatic neutrophil infiltration, hemorrhage, and edema formation in the pancreas in mice challenged with taurocholate. Farnesyltransferase inhibition reduced the myeloperoxidase levels in the pancreas and lungs in response to taurocholate infusion. However, FTI-277 had no effect on the taurocholate-provoked formation of macrophage inflammatory protein-2 in the pancreas. Interestingly, farnesyltransferase inhibition abolished the neutrophil expression of macrophage-1 antigen in mice with pancreatitis. In addition, FTI-277 decreased the taurocholate-induced activation of the rat sarcoma protein in the pancreas. An important role of farnesyltransferase was confirmed in L-arginine-induced pancreatitis. These results demonstrate that farnesyltransferase signaling plays a significant role in AP by regulating neutrophil infiltration and tissue injury via the neutrophil expression of macrophage-1 antigen. Thus, our findings not only elucidate novel signaling mechanisms in pancreatitis but also suggest that farnesyltransferase might constitute a target in the management of severe AP.
    Pancreas 04/2014; 43(3):427-35. · 2.95 Impact Factor

Full-text

View
47 Downloads
Available from
May 30, 2014