Article

APP transgenic mice for modelling behavioural and psychological symptoms of dementia (BPSD).

Département de Psychologie, Faculté des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
Neuroscience & Biobehavioral Reviews (Impact Factor: 9.44). 02/2012; 36(5):1357-75. DOI: 10.1016/j.neubiorev.2012.02.011
Source: PubMed

ABSTRACT The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioural and psychological symptoms of Alzheimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine.

0 Bookmarks
 · 
140 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes cognitive impairment. Major pathophysiological AD characteristics include numerous senile plaque, neurofibrillary tangles, and neuronal loss in the specific regions of patients' brains. In this study, we aimed to understand disease stage-dependent regulation of histone modification for the expression of specific markers in plasma and the hippocampus of in vivo AD model. Since the control of histone acetylation/deacetylation has been studied as one of major epigenetic regulatory mechanisms for specific gene expression, we detected the effects of histone deacetylase (HDAC) inhibitor on marker expression and neuroprotection in in vivo AD model mice. We determined the effects of valproic acid (VPA, HDAC inhibitor), on the levels of cytokines, sAPP, NGF, and cognitive function in Tg6799 AD mice in three different disease stages (1 month: pre-symptomatic; 5 months: early symptomatic; and 10 months: late symptomatic stages) VPA decreased the mRNA levels of NF-κB and IL-1ß in the plasma of Tg6799 mice compared to vehicle control at 10 months of age. VPA increased the protein levels of NGF in the hippocampus of Tg6799 mice at 5 and 10 months of age. In addition, VPA decreased escape latencies of Tg6799 mice at 5 and 10 months of age in Morris Water Maze assessment. Taken together, HDAC inhibition is a promising therapeutic target for AD and it needs to be considered in an age-dependent and/or stage-dependent manner.
    Neuroscience 02/2014; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter are a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9-10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy.
    Neuropharmacology 09/2013; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plant alkaloid galantamine is an established symptomatic drug treatment for Alzheimer's disease (AD), providing temporary cognitive and global relief in human patients. In this study, the 5X Familial Alzheimer's Disease (5XFAD) mouse model was used to investigate the effect of chronic galantamine treatment on behavior and amyloid β (Aβ) plaque deposition in the mouse brain. Quantification of plaques in untreated 5XFAD mice showed a gender specific phenotype; the plaque density increased steadily reaching saturation in males after 10 months of age, whereas in females the density further increased until after 14 months of age. Moreover, females consistently displayed a higher plaque density in comparison to males of the same age. Chronic oral treatment with galantamine resulted in improved performance in behavioral tests, such as open field and light-dark avoidance, already at mildly affected stages compared to untreated controls. Treated animals of both sexes showed significantly lower plaque density in the brain, i.e., the entorhinal cortex and hippocampus, gliosis being always positively correlated to plaque load. A high dose treatment with a daily uptake of 26 mg/kg body weight was tolerated well and produced significantly larger positive effects than a lower dose treatment (14 mg/kg body weight) in terms of plaque density and behavior. These results strongly support that galantamine, in addition to improving cognitive and behavioral symptoms in AD, may have disease-modifying and neuroprotective properties, as is indicated by delayed Aβ plaque formation and reduced gliosis.
    PLoS ONE 01/2014; 9(2):e89454. · 3.73 Impact Factor

Full-text (2 Sources)

View
36 Downloads
Available from
May 15, 2014