Environmental toxin 4-nonylphenol and autoimmune diseases: Using DNA microarray to examine genetic markers of cytokine expression

Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, USA.
Archives of medical science : AMS 06/2010; 6(3):321-7. DOI: 10.5114/aoms.2010.14250
Source: PubMed


Adverse progression of autoimmune diseases is linked to the dysregulation of cytokines. In this regard we investigated the role of 4-nonylphenol (4-NP), as a potential contributing factor in the development of immune diseases and compared it to estrogens actions since 4-NP may work via estrogen processes.
The study made cytokine level expression changes in U937 cells by microarray technology coupled to RT PCR as a validating technique.
It was determined that 4-NP significantly up-regulated proinflammatory cytokine expression (toll-like-receptor [TLR]-6, TLR-10, interleukin [IL]-1, IL-5, IL-6, IL-17C, IL-23A, IL-8RB, IL-receptor-associated-kinase [IRAK-2], tumor-necrosis-factor-receptor [TNFR]-5, and TNFR-10). Estrogen caused insignificant increases but the changes parralelled that of 4-NP. Simultaneously, 4-NP down-regulated the expression of anti-inflammatory cytokines (IL-4 and IL-10), while estrogen up-regulated them.
4-Nonylphenol may initiate its toxic effects and pose a risk to autoimmunity-prone individuals by eliciting effects up to 4 times more potent than estrogen. Overall, exposure to 4-NP may contribute to autoimmune susceptibility and/or exacerbate existing autoimmune conditions by dys-regulating normal expression of cytokines.

1 Follower
20 Reads
  • Source
    • "In vitro studies have shown that Treg cells can induce immune tolerance against tumor-specific antigens and affect the activation and proliferation of CD4+ T cells through the secretion of inhibitory cytokines IL-10 and TGF-β [9]. Transforming growth factor-β is mainly involved in the induction, maintenance and function of TregFoxP3 cells [10, 11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The aim of this study was to explore the relationships between TregFoxP3+ cells and Th17 cells and occurrence of lung cancer. Material and methods The proportions of TregFoxP3+ and Th17 cells, the expression of FoxP3 and RORγt mRNA, and the levels of related cell factors such as transforming growth factor-β (TGF-β), interleukin IL-17 (IL-17) and IL-23 were determined respectively by flow cytometry analysis, real-time-polymerase chain reaction (PCR), and ELISA in peripheral blood of 18 healthy people and 26 patients with non-small cell lung cancer (NSCLC). Results The levels of TregFoxP3+ and Th17, expression of FoxP3 and RORγt mRNA, and ratios of TregFoxP3+/Th17 and FoxP3/RORγt in peripheral blood with NSCLC were higher than those in healthy controls (p < 0.05). The proportion of Th17 cells from NSCLC patients was positively correlated with that of TregFoxP3+ (r = 0.81, p < 0.05). The receiver-operating characteristic (ROC) curve demonstrates that the increased level of TregFoxP3+/Th17 in the peripheral blood may be a useful indicator in early diagnosis of non-small cell lung carcinoma. The TregFoxP3+/Th17 and FoxP3/RORγt levels for patients in stage IV were higher than those of patients in stages I, II, and III (p < 0.05). The levels of TGF-β, IL-17, and IL-23 were higher in NSCLC patients than those in healthy controls. Conclusions The results suggest that ratios of Treg/Th17 correlate with the stage of NSCLC.
    Archives of Medical Science 05/2014; 10(2):232-9. DOI:10.5114/aoms.2014.42573 · 2.03 Impact Factor
  • Source
    • "Due to widespread and potentially chronic exposure, 4-NP poses a significant biological threat in comparison to other environmental toxins. Additionally, 4-NP has the longest alkyl chain within the alkylphenol family, facilitating its partition into lipophilic fat stores within body compartments [5,8,9,18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background 4-Nonylphenol is a ubiquitous environmental toxin that is formed as a byproduct in the manufacturing and/or sewage treatment of regular household items. Previous work in our lab has implicated 4-NP in the progression of autoimmune diseases such as inflammatory bowel disease in which macrophages mistakenly attack the intestinal linings, causing chronic inflammation. Several key pro-and anti-inflammatory molecules have been shown to be involved in the manifestation of this disease, including IL-23A, COX-2, IL-8, TLR-4, and IL-10. Material/Methods 4-NP’s effects on these known mediators of IBD were effectively analyzed using a novel model for IBD, by which 4-NP may promote an inflammatory response. Data were collected using DNA Microarray, RT-PCR, and ELISA, after 48 hour treatment of U937 histiocytic lymphocyte cells and COLO320DM human intestinal epithelial cells with 1 nM and 5 nM concentrations of 4-NP. Results Significant dysregulation of the expression of both pro- and anti-inflammatory genes was observed in U937 cells that would promote and prolong inflammation. However, TLR-4, IL-8, and COX-2 gene expressions showed unprecedented effects in COLO320DM cells suggesting that these genes mediate apoptotic processes within the gastrointestinal tract. Conclusions Overall, our results suggest that 4-NP administration engenders immune responses linked to apoptotic processes via dysregulation of macrophage signaling. In sum, 4-NP appears to increases the risk of developing inflammatory bowel disease by promoting or prolonging adverse progression of inflammation in the gastrointestinal tract.
    04/2014; 20:47-54. DOI:10.12659/MSMBR.890644
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations.
    Medical science monitor: international medical journal of experimental and clinical research 04/2012; 18(4):HY5-8. DOI:10.12659/MSM.882602 · 1.43 Impact Factor
Show more

Preview (2 Sources)

20 Reads
Available from