Article

A phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors.

Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
Clinical Cancer Research (Impact Factor: 8.19). 02/2012; 18(8):2344-51. DOI: 10.1158/1078-0432.CCR-11-2425
Source: PubMed

ABSTRACT To determine the safety and tolerability of olaparib with cisplatin and gemcitabine, establish the maximum tolerated dose (MTD), and evaluate the pharmacodynamic and pharmacokinetic profile of the combination.
We conducted a phase I study of olaparib with cisplatin and gemcitabine in patients with advanced solid tumors. Treatment at dose level 1 (DL1) consisted of olaparib 100 mg orally every 12 hours on days 1 to 4, gemcitabine 500 mg/m(2) on days 3 and 10, and cisplatin 60 mg/m(2) on day 3. PAR levels were measured in peripheral blood mononuclear cells (PBMC).
Dose-limiting toxicities (DLT) in two of three patients at DL1 included thrombocytopenia and febrile neutropenia. The protocol was amended to enroll patients treated with ≤ 2 prior severely myelosuppressive chemotherapy regimens and treated with olaparib 100 mg once daily on days 1 to 4 (DL-1). No DLTs were seen in six patients at DL-1. Because of persistent thrombocytopenia and neutropenia following a return to DL1, patients received 100 mg olaparib every 12 hours on day 1 only. No hematologic DLTs were observed; nonhematologic DLTs included gastrointestinal bleed, syncope, and hypoxia. Of 21 patients evaluable for response, two had partial response. Olaparib inhibited PARP in PBMCs and tumor tissue, although PAR levels were less effectively inhibited when olaparib was used for a short duration.
Olaparib in combination with cisplatin and gemcitabine is associated with myelosuppression even at relatively low doses. Modified schedules of olaparib in chemotherapy naive patients will have to be explored with standard doses of chemotherapy.

0 Bookmarks
 · 
127 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly (ADP) ribose polymerase (PARP) plays a key role in DNA repair and is highly expressed in small cell lung cancer (SCLC). We investigated the therapeutic impact of PARP inhibition in SCLC. In vitro cytotoxicity of veliparib, cisplatin, carboplatin, and etoposide singly and combined was determined by MTS in 9 SCLC cell lines (H69, H128, H146, H526, H187, H209, DMS53, DMS153, and DMS114). Subcutaneous xenografts in athymic nu/nu mice of H146 and H128 cells with relatively high and low platinum sensitivity, respectively, were employed for in vivo testing. Mechanisms of differential sensitivity of SCLC cell lines to PARP inhibition were investigated by comparing protein and gene expression profiles of the platinum sensitive and the less sensitive cell lines. Veliparib showed limited single-agent cytotoxicity but selectively potentiated (≥50% reduction in IC50) cisplatin, carboplatin, and etoposide in vitro in five of nine SCLC cell lines. Veliparib with cisplatin or etoposide or with both cisplatin and etoposide showed greater delay in tumor growth than chemotherapy alone in H146 but not H128 xenografts. The potentiating effect of veliparib was associated with in vitro cell line sensitivity to cisplatin (CC = 0.672; P = 0.048) and DNA-PKcs protein modulation. Gene expression profiling identified differential expression of a 5-gene panel (GLS, UBEC2, HACL1, MSI2, and LOC100129585) in cell lines with relatively greater sensitivity to platinum and veliparib combination. Veliparib potentiates standard cytotoxic agents against SCLC in a cell-specific manner. This potentiation correlates with platinum sensitivity, DNA-PKcs expression and a 5-gene expression profile.
    Cancer Medicine 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as “BRCAness”) not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify “BRCAness” pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 08/2014; · 7.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:Olaparib, an oral PARP inhibitor, has shown antitumour activity as monotherapy in patients with germline BRCA1/2 (gBRCA)-mutated breast and ovarian cancer. This study evaluated olaparib capsules in combination with liposomal doxorubicin (PLD) in patients with advanced solid tumours (NCT00819221).Methods:Patients received 28-day cycles of olaparib, continuously (days 1-28) or intermittently (days 1-7), plus PLD (40 mg m(-2), day 1); seven olaparib dose cohorts (50-400 mg bid) were explored to determine the recommended dose. Assessments included safety, pharmacokinetics, pharmacodynamics and preliminary efficacy (objective response rate (ORR)).Results:Of 44 patients treated (ovarian, n=28; breast, n=13; other/unknown, n=3), two experienced dose-limiting toxicities (grade 3 stomatitis and fatal pneumonia/pneumonitis (200 mg per 28-day cycle); grade 4 thrombocytopenia (400 mg per 7-day cycle)). The maximum tolerated dose was not reached using continuous olaparib 400 mg bid plus PLD. Grade ⩾3 and serious AEs were reported for 27 (61%) and 12 (27%) patients, respectively. No major pharmacokinetic interference was observed between olaparib and PLD. The ORR was 33% (n=14 out of 42; complete response, n=3). A total of 13 responders had ovarian cancer: 10 were platinum-sensitive, 11 had a gBRCA mutation.Conclusions:Continuous/intermittent olaparib (up to 400 mg bid) combined with PLD (40 mg m(-2)) was generally tolerated and showed evidence of antitumour activity in ovarian cancer.British Journal of Cancer advance online publication, 15 July 2014; doi:10.1038/bjc.2014.345 www.bjcancer.com.
    British Journal of Cancer 07/2014; · 4.82 Impact Factor