A Phase I Combination Study of Olaparib with Cisplatin and Gemcitabine in Adults with Solid Tumors

Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
Clinical Cancer Research (Impact Factor: 8.19). 02/2012; 18(8):2344-51. DOI: 10.1158/1078-0432.CCR-11-2425
Source: PubMed

ABSTRACT To determine the safety and tolerability of olaparib with cisplatin and gemcitabine, establish the maximum tolerated dose (MTD), and evaluate the pharmacodynamic and pharmacokinetic profile of the combination.
We conducted a phase I study of olaparib with cisplatin and gemcitabine in patients with advanced solid tumors. Treatment at dose level 1 (DL1) consisted of olaparib 100 mg orally every 12 hours on days 1 to 4, gemcitabine 500 mg/m(2) on days 3 and 10, and cisplatin 60 mg/m(2) on day 3. PAR levels were measured in peripheral blood mononuclear cells (PBMC).
Dose-limiting toxicities (DLT) in two of three patients at DL1 included thrombocytopenia and febrile neutropenia. The protocol was amended to enroll patients treated with ≤ 2 prior severely myelosuppressive chemotherapy regimens and treated with olaparib 100 mg once daily on days 1 to 4 (DL-1). No DLTs were seen in six patients at DL-1. Because of persistent thrombocytopenia and neutropenia following a return to DL1, patients received 100 mg olaparib every 12 hours on day 1 only. No hematologic DLTs were observed; nonhematologic DLTs included gastrointestinal bleed, syncope, and hypoxia. Of 21 patients evaluable for response, two had partial response. Olaparib inhibited PARP in PBMCs and tumor tissue, although PAR levels were less effectively inhibited when olaparib was used for a short duration.
Olaparib in combination with cisplatin and gemcitabine is associated with myelosuppression even at relatively low doses. Modified schedules of olaparib in chemotherapy naive patients will have to be explored with standard doses of chemotherapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low millimolar concentrations of ascorbate are capable of inflicting lethal damage on a high proportion of cancer cells lines, yet leave non-transformed cell lines unscathed. Extracellular generation of hydrogen peroxide, reflecting reduction of molecular oxygen by ascorbate, has been shown to mediate this effect. Although some cancer cell lines express low catalase activity, this cannot fully explain the selective sensitivity of cancer cells to hydrogen peroxide. Ranzato and colleagues have presented evidence for a plausible new explanation of this sensitivity - a high proportion of cancers, via NADPH oxidase complexes or dysfunctional mitochondria, produce elevated amounts of superoxide. This superoxide, via a transition metal-catalyzed transfer of an electron to the hydrogen peroxide produced by ascorbate, can generate deadly hydroxyl radical (Haber-Weiss reaction). It thus can be predicted that concurrent measures which somewhat selectively boost superoxide production in cancers will enhance their sensitivity to i.v. ascorbate therapy. One way to achieve this is to increase the provision of substrate to cancer mitochondria. Measures which inhibit the constitutive hypoxia-inducible factor-1 (HIF-1) activity in cancers (such as salsalate and mTORC1 inhibitors, or an improvement of tumor oxygenation), or that inhibit the HIF-1-inducible pyruvate dehydrogenase kinase (such as dichloroacetate), can be expected to increase pyruvate oxidation. A ketogenic diet should provide more lipid substrate for tumor mitochondria. The cancer-killing activity of 42°C hyperthermia is to some degree contingent on an increase in oxidative stress, likely of mitochondrial origin; reports that hydrogen peroxide synergizes with hyperthermia in killing cancer cells suggest that hyperthermia and i.v. ascorbate could potentiate each other's efficacy. A concurrent enhancement of tumor oxygenation might improve results by decreasing HIF-1 activity while increasing the interaction of ascorbic acid with oxygen. An increased pool of labile iron in cancer cells may contribute to the selective susceptibility of many cancers to i.v. ascorbate; antagonism of NF-kappaB activity with salicylate, and intravenous iron administration, could be employed to further elevate free iron in cancers.
    Frontiers in Oncology 09/2014; 4:249. DOI:10.3389/fonc.2014.00249
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial ovarian cancer remains the most lethal gynecologic malignancy. During the last 15 years, there has been only marginal improvement in 5 year overall survival. These daunting statistics are compounded by the fact that despite all subtypes exhibiting striking het-erogeneity, their systemic management remains identical. Although changes to the scheduling and administration of chemotherapy have improved outcomes to a degree, a therapeutic ceiling is being reached with this approach, resulting in a number of trials investigating the efficacy of targeted therapies alongside standard treatment algorithms. Furthermore, there is an urge to develop subtype-specific studies in an attempt to improve outcomes, which currently remain poor. This review summarizes the key studies with antiangiogenic agents, poly(adenosine diphosphate [ADP]-ribose) inhibitors, and epidermal growth factor receptor/human epidermal growth factor receptor family targeting, in addition to folate receptor antagonists and insulin growth factor receptor inhibitors. The efficacy of treatment paradigms used in non-ovarian malignancies for type I tumors is also highlighted, in addition to recent advances in appropriate patient stratification for targeted therapies in epithelial ovarian cancer.
    International Journal of Women's Health 02/2015; 20157:189-203. DOI:10.2147/IJWH.S52379
  • [Show abstract] [Hide abstract]
    ABSTRACT: Olaparib (Lynparza(™)) is an oral, small molecule, poly (ADP-ribose) polymerase inhibitor being developed by AstraZeneca for the treatment of solid tumours. The primary indication that olaparib is being developed for is BRCA mutation-positive ovarian cancer. A capsule formulation of the drug has received approval for use in this setting in the EU and USA, and a tablet formulation is in global phase III trials (including in the USA, EU, Australia, Brazil, Canada, China, Israel, Japan, Russia and South Korea). In addition, phase III trials in breast, gastric and pancreatic cancer are underway/planned, and phase I/II investigation is being conducted in other malignancies, including prostate cancer, non-small cell lung cancer, Ewing's sarcoma and advanced cancer. This article summarizes the milestones in the development of olaparib leading to this first approval for ovarian cancer.
    Drugs 01/2015; 75(2). DOI:10.1007/s40265-015-0345-6 · 4.13 Impact Factor