Article

Ethyl pyruvate induces heme oxygenase-1 through p38 mitogen-activated protein kinase activation by depletion of glutathione in RAW 264.7 cells and improves survival in septic animals.

Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea.
Antioxidants & Redox Signaling (Impact Factor: 7.67). 02/2012; 17(6):878-89. DOI: 10.1089/ars.2011.3994
Source: PubMed

ABSTRACT We investigated the molecular mechanism by which ethyl pyruvate (EP) induces heme oxygenase-1 (HO-1) in RAW 264.7 cells and its effect on survival rate in cecal ligation and puncture (CLP)-induced wild-type (WT) and HO-1 knockout (HO-1(-/-)) septic mice.
EP induced HO-1 in a dose- and time-dependent manner, which was mediated through p38 mitogen-activated protein kinase (MAPK) and NF-E2-related factor 2 (Nrf2) signaling cascade in RAW 264.7 cells. EP significantly inhibited the lipopolysaccharide (LPS)-stimulated inducible nitric oxide synthase (iNOS) expression and high-mobility group box 1 (HMGB1) release in RAW 264.7 cells. The inhibitory effect of EP on LPS-stimulated iNOS expression and HMGB1 release was reversed by transfection with siHO-1RNA in RAW 264.7 cells, but EP failed to reduce them in HO-1(-/-) peritoneal macrophages treated with LPS. Moreover, treatment of cells with glutathione ethyl ester (GSH-Et), SB203580 (p38 MAPK inhibitor), siHO-1, or p38-siRNA transfection inhibited anti-inflammatory effect of EP. Interestingly, both HO-1 induction and phosphorylation of p38 by EP were reversed by GSH-Et, and antioxidant redox element-luciferase activity by EP was reversed by SB203580 in LPS-activated cells. EP increased survival and decreased serum HMGB1 in CLP-WT mice, whereas it did not increase survival or decrease circulating HMGB1 in HO-1(-/-) CLP-mice. Innovation and
Our work provides new insights into the understanding the molecular mechanism by showing that EP induces HO-1 through a p38 MAPK- and NRF2-dependent pathway by decreasing GSH cellular levels. We conclude that EP inhibits proinflammatory response to LPS in macrophages and increases survival in CLP-induced septic mice by upregulation of HO-1 level, in which p38 MAPK and Nrf2 play an important role.

0 Followers
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.
    Veterinary Research 01/2015; 46(1):32. DOI:10.1186/s13567-015-0168-1 · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin in animals and humans. Porcine circovirus-associated disease (PCVAD), including porcine dermatitis and nephropathy syndrome, is a worldwide swine disease. To date, little is known concerning the relationship between OTA and porcine circovirus type 2 (PCV2), the primary causative agent of PCVAD. Effects of OTA on PCV2 replication and its mechanism were investigated in vitro and in vivo. The results in vitro showed that low doses of OTA significantly increased PCV2 DNA copies and the number of infected cells. Maximum effects were observed at 0.05μg/ml OTA. The results in vivo showed that PCV2 replication was significantly increased in serum and tissues of pigs fed 75μg/kg OTA compared with the control group and pigs fed 150μg/kg OTA. In addition, low doses of OTA significantly depleted reduced glutathione and mRNA expression of NF-E2-related factor 2 and γ-glutamyl-cysteine synthetase, increased reactive oxygen species, oxidants, and malondialdehyde, and induced p38 and ERK1/2 phosphorylation in PK15 cells. Adding N-acetyl-L-cysteine reversed the changes induced by OTA. Knock-down of p38 and ERK1/2 by their respective specific siRNA or inhibition of p38 and ERK1/2 phosphorylation by their respective inhibitor (SB203580 and U0126) eliminated the increase in PCV2 replication induced by OTA. These data indicate that low doses of OTA promoted PCV2 replication in vitro and in vivo via the oxidative stress-mediated p38/ERK1/2 MAPK signaling pathway. This suggests that low doses of OTA are potentially harmful to animals as they enhance virus replication and partly explains why the morbidity and severity of PCVAD varies significantly in different pig farms. Copyright © 2014. Published by Elsevier Inc.
    Free Radical Biology and Medicine 12/2014; 80. DOI:10.1016/j.freeradbiomed.2014.12.016 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethyl pyruvate (EP) is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC) inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs) and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8) production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK). EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer) attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS.
    PLoS ONE 12/2014; 9(12):e113983. DOI:10.1371/journal.pone.0113983 · 3.53 Impact Factor