Article

An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems.

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
BMC Genomics (Impact Factor: 4.4). 01/2012; 13 Suppl 1:S12. DOI: 10.1186/1471-2164-13-S1-S12
Source: PubMed

ABSTRACT Bayesian networks (BNs) have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures.
In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC) method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures.
We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Building accurate gene regulatory networks (GRNs) from high-throughput gene expression data is a long-standing challenge. However, with the emergence of new algorithms combined with the increase of transcriptomic data availability, it is now reachable. To help biologists to investigate gene regulatory relationships, we developed a web-based computational service to build, analyze and visualize GRNs that govern various biological processes. The web server is preloaded with all available Affymetrix GeneChip-based transcriptomic and annotation data from the three model legume species, i.e., Medicago truncatula, Lotus japonicus and Glycine max. Users can also upload their own transcriptomic and transcription factor datasets from any other species/organisms to analyze their in-house experiments. Users are able to select which experiments, genes and algorithms they will consider to perform their GRN analysis. To achieve this flexibility and improve prediction performance, we have implemented multiple mainstream GRN prediction algorithms including co-expression, Graphical Gaussian Models (GGMs), Context Likelihood of Relatedness (CLR), and parallelized versions of TIGRESS and GENIE3. Besides these existing algorithms, we also proposed a parallel Bayesian network learning algorithm, which can infer causal relationships (i.e., directionality of interaction) and scale up to several thousands of genes. Moreover, this web server also provides tools to allow integrative and comparative analysis between predicted GRNs obtained from different algorithms or experiments, as well as comparisons between legume species. The web site is available at http://legumegrn.noble.org.
    PLoS ONE 01/2013; 8(7):e67434. · 3.53 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
May 22, 2014