Metabolic Cost of Running Barefoot versus Shod: Is Lighter Better?

Locomotion Lab, Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
Medicine and science in sports and exercise (Impact Factor: 3.98). 02/2012; 44(8):1519-25. DOI: 10.1249/MSS.0b013e3182514a88
Source: PubMed

ABSTRACT Based on mass alone, one might intuit that running barefoot would exact a lower metabolic cost than running in shoes. Numerous studies have shown that adding mass to shoes increases submaximal oxygen uptake (V˙O(2)) by approximately 1% per 100 g per shoe. However, only two of the seven studies on the topic have found a statistically significant difference in V˙O(2) between barefoot and shod running. The lack of difference found in these studies suggests that factors other than shoe mass (e.g., barefoot running experience, foot strike pattern, shoe construction) may play important roles in determining the metabolic cost of barefoot versus shod running. Our goal was to quantify the metabolic effects of adding mass to the feet and compare oxygen uptake and metabolic power during barefoot versus shod running while controlling for barefoot running experience, foot strike pattern, and footwear.
Twelve males with substantial barefoot running experience ran at 3.35 m·s with a midfoot strike pattern on a motorized treadmill, both barefoot and in lightweight cushioned shoes (∼150 g per shoe). In additional trials, we attached small lead strips to each foot/shoe (∼150, ∼300, and ∼450 g). For each condition, we measured the subjects' rates of oxygen consumption and carbon dioxide production and calculated metabolic power.
V˙O(2) increased by approximately 1% for each 100 g added per foot, whether barefoot or shod (P < 0.001). However, barefoot and shod running did not significantly differ in V˙O(2) or metabolic power. A consequence of these two findings was that for footwear conditions of equal mass, shod running had ∼3%-4% lower V˙O(2) and metabolic power demand than barefoot running (P < 0.05).
Running barefoot offers no metabolic advantage over running in lightweight, cushioned shoes.

Download full-text


Available from: Jason R Franz, Sep 25, 2015
1,015 Reads
    • "But our results suggest that there may be cases where external energy dissipation could actually help to reduce active energy absorption (and therefore positive work) by the human, and thus save metabolic energy or yield more subjective benefits. Indeed, some findings suggest that a cushioned surface can actually reduce the metabolic cost of running (Franz et al., 2012; Frederick et al., 1983; Tung et al., 2014). Cushioning also allows subjects to run with less knee flexion (Ferris et al., 1998; Ferris and Farley, 1997), which might reduce the mechanical work performed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans can perform motor tasks in a variety of ways, yet often favor a particular strategy. Some factors governing the preferred strategy may be objective and quantifiable, (e.g. metabolic energy or mechanical work) while others may be more subjective and less measurable, (e.g. discomfort, pain, or mental effort). Subjectivity can make it challenging to explain or predict preferred movement strategies. We propose that subjective factors might nevertheless be characterized indirectly by their trade-offs against more objective measures such as work. Here we investigated whether subjective costs that influence human movement during drop landings could be indirectly assessed by quantifying mechanical work performed. When landing on rigid ground, humans typically absorb much of the collision actively by bending their knees, perhaps to avoid the discomfort of stiff-legged landings. We measured how work performed by healthy adults (N=8) changed as a function of surface cushioning for drop landings (fixed at about 0.4m) onto varying amounts of foam. Landing on more foam dissipated more energy passively in the surface, thus reducing the net dissipation required of subjects, due to relatively fixed landing energy. However, subjects actually performed even less work in the dissipative collision, as well as in the subsequent active, positive work to return to upright stance (approximately linear decrease of about 1.52J per 1cm of foam thickness). As foam thickness increased, there was also a corresponding reduction in center-of-mass vertical displacement after initial impact by up to 43%. Humans appear to subjectively value cushioning, revealed by the extra work they perform landing without it. Cushioning is thus worth more than the energy it dissipates, in an amount that indicates the subjective discomfort of stiff landings. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Journal of Biomechanics 04/2015; 48(10). DOI:10.1016/j.jbiomech.2015.04.029 · 2.75 Impact Factor
    • "ifferent days per subject ( following the recommenda - tion of Morgan et al . ( 1989 ) and Williams et al . ( 1991 ) ) as well as a repeated measures design allowed for sufficient resolution to identify differences between the shoe condi - tions . This is not surprising , as others such as Frederick et al . ( 1986 ) , Divert et al . ( 2008 ) , and Franz et al . ( 2012 ) have also identified statistically significant differences in oxygen consumption during running in the order of 1 . 0% due to footwear interventions . The Control and Soft shoes tested in this study dif - fered in more than one cushioning variable : the shoes had different midsole stiffness and hysteresis . In the treadmill experiment"
    Footwear Science 07/2013; 5. DOI:10.1080/19424280.2013.799566
  • Source
    • "Barefoot running also induces a complete removal of the impact peak and a markedly reduced LR (Dickinson et al. 1985; Lieberman et al. 2010; Hamill et al. 2011; Goss and Gross 2012b). However, although trendy and potentially interesting for specific injury prevention, barefoot running presents obvious environmental limits and provides no benefit in terms of energetic cost, compared to wearing light shoes (~150 g) (Franz et al. 2012). Recently, Giandolini et al. (2013) observed a 50 % reduction in LR associated with a higher gastrocnemius lateralis pre-contact activation and a lower tibialis anterior activation during a 5-min MFS shod trial in habitually RFS recreational runners. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Impact reduction has become a factor of interest in the prevention of running-related injuries such as stress fractures. Currently, the midfoot strike pattern (MFS) is thought as a potential way to decrease impact. The purpose was to test the effects of two long-term interventions aiming to reduce impact during running via a transition to an MFS: a foot strike retraining versus a low-drop/low-heel height footwear. Thirty rearfoot strikers were randomly assigned to two experimental groups (SHOES and TRAIN). SHOES progressively wore low-drop/low-heel height shoes and TRAIN progressively adopted an MFS, over a 3-month period with three 30-min running sessions per week. Measurement sessions (pre-training, 1, 2 and 3 months) were performed during which subjects were equipped with three accelerometers on the shin, heel and metatarsals, and ran for 15 min on an instrumented treadmill. Synchronized acceleration and vertical ground reaction force signals were recorded. Peak heel acceleration was significantly lower as compared to pre-training for SHOES (-33.5 ± 12.8 % at 2 months and -25.3 ± 18.8 % at 3 months, p < 0.001), and so was shock propagation velocity (-12.1 ± 9.3 %, p < 0.001 at 2 months and -11.3 ± 4.6 %, p < 0.05 at 3 months). No change was observed for TRAIN. Important inter-individual variations were noted in both groups and reported pains were mainly located at the shin and calf. Although it induced reversible pains, low-drop/low-heel height footwear seemed to be more effective than foot strike retraining to attenuate heel impact in the long term.
    Arbeitsphysiologie 04/2013; 113(8). DOI:10.1007/s00421-013-2634-7 · 2.19 Impact Factor
Show more