Metabolic cost of running barefoot versus shod: is lighter better?

Locomotion Lab, Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
Medicine and science in sports and exercise (Impact Factor: 4.48). 02/2012; 44(8):1519-25. DOI: 10.1249/MSS.0b013e3182514a88
Source: PubMed

ABSTRACT Based on mass alone, one might intuit that running barefoot would exact a lower metabolic cost than running in shoes. Numerous studies have shown that adding mass to shoes increases submaximal oxygen uptake (V˙O(2)) by approximately 1% per 100 g per shoe. However, only two of the seven studies on the topic have found a statistically significant difference in V˙O(2) between barefoot and shod running. The lack of difference found in these studies suggests that factors other than shoe mass (e.g., barefoot running experience, foot strike pattern, shoe construction) may play important roles in determining the metabolic cost of barefoot versus shod running. Our goal was to quantify the metabolic effects of adding mass to the feet and compare oxygen uptake and metabolic power during barefoot versus shod running while controlling for barefoot running experience, foot strike pattern, and footwear.
Twelve males with substantial barefoot running experience ran at 3.35 m·s with a midfoot strike pattern on a motorized treadmill, both barefoot and in lightweight cushioned shoes (∼150 g per shoe). In additional trials, we attached small lead strips to each foot/shoe (∼150, ∼300, and ∼450 g). For each condition, we measured the subjects' rates of oxygen consumption and carbon dioxide production and calculated metabolic power.
V˙O(2) increased by approximately 1% for each 100 g added per foot, whether barefoot or shod (P < 0.001). However, barefoot and shod running did not significantly differ in V˙O(2) or metabolic power. A consequence of these two findings was that for footwear conditions of equal mass, shod running had ∼3%-4% lower V˙O(2) and metabolic power demand than barefoot running (P < 0.05).
Running barefoot offers no metabolic advantage over running in lightweight, cushioned shoes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the effects of surface and shoe cushioning on the metabolic cost of running. In running, the leg muscles generate force to cushion the impact with the ground. External cushioning (surfaces or shoes) may reduce the muscular effort needed for cushioning and thus reduce metabolic cost. Our primary hypothesis was that the metabolic cost of unshod running would decrease with a more cushioned running surface. We also hypothesized that because of the counteracting effects of shoe cushioning and mass, unshod running on a hard surface would have approximately the same metabolic cost as running in lightweight, cushioned shoes. To test these hypotheses, we attached 10- and 20-mm-thick slats of the same foam cushioning used in running shoe midsoles to the belt of a treadmill that had a rigid deck. Twelve subjects who preferred a midfoot strike pattern and had substantial barefoot/minimalist running experience ran without shoes on the normal treadmill belt and on each thickness of foam. They also ran with lightweight, cushioned shoes on the normal belt. We collected V˙O2 and V˙CO2 to calculate the metabolic power demand and used a repeated-measures ANOVA to compare between conditions. Compared to running unshod on the normal belt, running unshod on the 10-mm-thick foam required 1.63% ± 0.67% (mean ± SD) less metabolic power (P = 0.034) but running on the 20-mm-thick foam had no significant metabolic effect. Running with and without shoes on the normal belt had similar metabolic power demands, likely because the beneficial energetic effects of cushioning counterbalanced the detrimental effects of shoe mass. On average, surface and shoe cushioning reduce the metabolic power required for submaximal running.
    Medicine and science in sports and exercise 02/2014; 46(2):324-329. · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To analyze the influence of foot strike pattern on running economy and biomechanical characteristics in sub-elite runners with a similar performance level. METHODS: Twenty sub-elite long-distance runners participated and were divided into two groups according to their foot strike pattern: rearfoot (RF, n= 10) and midfoot strikers (MF, n= 10). Anthropometric characteristics were measured (height, body mass, BMI, skinfolds, circumferences and lengths); physiological (V˙O2max, anaerobic threshold and running economy) and biomechanical characteristics (contact and flight times, step rate and step length) were registered during both incremental and submaximal tests on a treadmill. RESULTS: There were no significant intergroup differences in anthropometrics, V˙O2max or anaerobic threshold measures. RF strikers were 5.4, 9.3 and 5.0% more economical than MF at submaximal speeds (11, 13 and 15 km·h respectively, though the difference was not significant at 15 km·h, p=0.07). Step rate and step length were not different between groups, but RF showed longer contact time (p<0.01) and shorter flight time (p<0.01) than MF at all running speeds. CONCLUSIONS: The present study showed that habitually rearfoot striking runners are more economical than midfoot strikers. Foot strike pattern affected both contact and flight times, which may explain the differences in running economy.
    Medicine &amp Science in Sports &amp Exercise 03/2014; 46(3):580-585. · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Running shoes are often marketed based on mass. A total of 50 young adult males participated across two separate experiments to determine how well they could perceive the relative masses of five different running shoes using hands versus feet. For the foot portion, subjects were blindly fitted with the shoes and asked to rank their masses individually using visual analogue scales (VAS) and verbal rankings. For the hand portion, two different methods were used, one presenting all shoes simultaneously and the other presenting the shoes individually. Verbal accuracy and VAS scores correlated across subjects for the hand and foot, but accuracy in mass perception by the feet was 30% compared to 92% or 63% by the hand (depending on the method). These results indicate the foot perceives mass poorly compared to the hand, and that consumers' perception of shoe mass may come more from handling shoes versus wearing them.
    Ergonomics 06/2014; 57(6):912-920. · 1.67 Impact Factor


Available from
Jun 2, 2014