Determination of pharmaceuticals and antiseptics in water by solid-phase extraction and gas chromatography/mass spectrometry: Analysis via pentafluorobenzylation and stable isotope dilution

Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.44). 02/2012; 403(2):583-91. DOI: 10.1007/s00216-012-5846-5
Source: PubMed


A sensitive yet robust analytical method is presented for the simultaneous determination of 12 human pharmaceuticals (valproic acid, phenytoin, ibuprofen, gabapentin, acetaminophen, gemfibrozil, naproxen, ketoprofen, secobarbital, phenobarbital, 5-fluorouracil, and diclofenac) and 6 antiseptics (biosol, biphenylol, p-chloro-m-cresol, p-chloro-m-xylenol, chlorophene, and triclosan). The method employs solid-phase extraction (SPE) followed by a novel pentafluorobenzylation using a mixture of acetontrile/water (1/1, v/v). The method is simple to perform (derivatization can be completed in a single test tube) and eliminates the need for any solvent/SPE cartridge drying or blow-down. It affords excellent resolution, high sensitivity and reproducibility, and freedom from interference even for matrices as complex as untreated sewage. The method was applied to the analysis of sewage samples using 15 isotopically labeled surrogates, which resulted in the detection of 10 of the 12 pharmaceuticals and all of the antiseptics sought. Ten of 15 surrogates were synthesized from pure analytes by a simple H-D exchange reaction employing D(2)O and D(2)SO(4). Measured recoveries were sensitive to matrix effects and varied substantially among analytes, indicative of the limitations associated with using a single surrogate standard.

1 Follower
19 Reads
  • Source
    • "A highly sensitive UPLC–MS/MS method for the quantitative analysis of KTP in dialyzes from topical preparations has been published (Tettey-Amlalo and Kanfer, 2009). KTP has been determined simultaneously with other pharmaceuticals, from these we can mention GC-MS/MS for the analysis of KTP and other NSAID including IBP, and/or naproxen in waste water and environmental water samples, after derivatization (Hashim and Khan, 2011; Yu et al., 2012), GC- MS/MS in urine and blood samples (Azzouz and Ballesteros, 2012), the use of capillary electrochromatography coupled with UV or mass spectrometry in water samples (Hsu et al., 2011), GCtandem mass spectrometry in bovine milk (Dowling et al., 2008), HPLC for the simultaneous determination of KTP and mefenamic acid in tablets (Hung and Hwang, 2008), with IBP and other NSAID (Jedziniak et al., 2012) (Patrolecco et al., 2013). A simple new chemiluminescent method for the determination of IBP and KTP is described using the Fenton system in the presence of europium(iii) ions (Kaczmarek and Lis, 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the work was to establish a new, rapid and sensitive HPLC–DAD method for simultaneous determination of three most commonly prescribed drugs; hyoscine, ketoprofen, and ibuprofen. The HPLC separation of the analytes was performed on a hypersil - Gold C18 (150 mm × 4.6 mm, 8 μm) column, using gradient elution of the mobile phase composed of 0.01 M potassium phosphate dibasic containing 2 g/L heptane sulphonic acid sodium salt maintained at pH 3.5 (Pump A) and acetonitrile 80% v/v (pump B) with a flow rate of 2 mL/min. The multiple wavelength detector was set at 210 nm for measurement of all compounds. Quantification was based on measuring the peak areas. The three compounds were resolved with retention times 6.42 ± 0.009, 10.63 ± 0.006 and 16.43 ± 0.008 min for hyoscine, ketoprofen and ibuprofen, respectively.The calibration curves were linear in the range of 0.64 – 96, 0.64 – 400 and 1.28 – 640 μg/mL for hyoscine, ketoprofen and ibuprofen, respectively, all of them with coefficients of determination above 0.9995. The methodology recoveries were higher than 95.0%. The limits of detection (LODs) were 0.11, 0.17 and 0.17 μg/mL for hyoscine, ketoprofen, and ibuprofen, respectively. The intra- and inter-day coefficients of variation were less than 2%. The method is accurate, sensitive and simple for quality control as well as for stability indicating purposes. Key words: Hyoscine, Ketoprofen, Ibuprofen, Spasmofen, HPLC–DAD, stabilityindicating. INTRODUCTION
    Journal of Applied Pharmaceutical Science 01/2013; 3(07):038-047. DOI:10.7324/JAPS.2013.3708 · 0.47 Impact Factor
  • Source
    • "[#97] Wastewaters (Stülten et al., 2008); treated wastewaters (Gros et al., 2012; Yu et al., 2012a); sewage sludge (Yu and Wu, 2012); fish (Lahti et al., 2012) Gabapentin [#20] Surface water (Ferrer and Thurman, 2012; Kasprzyk-Hordern et al., 2008); wastewater (Lai et al., 2011); surface water and drinking water (Morasch et al., 2010) Olanzapine (#195) Wastewaters and surface water (Bahr, 2009; Gracia-Lor et al., 2011) Quinine [n.a.] Acute toxicity hazard for children (Daughton, 2010a; references cited therein) Risperidone [#80] Fish (Fick et al., 2010); wastewaters (Bahr, 2009; Woldegiorgis et al., 2007) Trazodone [#37] Surface waters and wastewaters (Gros et al., 2012; Himmelsbach et al., 2006; Martínez Bueno et al., 2012) a Drug frequently prescribed for off-label indications and which has weak supporting evidence (Eguale et al., 2012). b Representative recent references documenting API occurrence in ambient waters, treated sewage effluent or sludge, sewage biosolids, or aquatic tissues. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The prescribed use of pharmaceuticals can result in unintended, unwelcomed, and potentially adverse consequences for the environment and for those not initially targeted for treatment. Medication usage frequently results in the collateral introduction to the environment (via excretion and bathing) of active pharmaceutical ingredients (APIs), bioactive metabolites, and reversible conjugates. Imprudent prescribing and non-compliant patient behavior drive the accumulation of unused medications, which pose major public health risks from diversion as well as risks for the environment from unsound disposal, such as flushing to sewers. The prescriber has the unique wherewithal to reduce each of these risks by modifying various aspects of the practice of prescribing. By incorporating consideration of the potential for adverse environmental impacts into the practice of prescribing, patient care also could possibly be improved and public health better protected.
    Science of The Total Environment 11/2012; 443C:324-337. DOI:10.1016/j.scitotenv.2012.10.092 · 4.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of derivatization reactions is a common practice in analytical laboratories. Although in many cases it is tedious and time-consuming, it does offer a good alternative for the determination of analytes not compatible to gas chromatography. Many of the reactions reported in the literature occur in organic medium. However, in situ aqueous derivatization reactions, which can be performed directly in aqueous medium, offer important advantages over those mentioned above, such as no need of a previous extraction step and easy automation. Here we review the most recent developments and applications of in situ aqueous derivatization. The discussion focuses on the derivatization reactions used for the determination of alcohols and phenols, carboxylic acids, aldehydes and ketones, nitrogen-containing compounds and thiols in different aqueous matrices, such as environmental, biological and food samples. Several reactions are described for each functional group (acylation, alkylation, esterification, among others) and, in some cases, the same reagents can be used for several functional groups, such that there is an unavoidable overlap between sections. Finally, attention is also focused on the techniques used for the introduction of the derivatives formed in the aqueous medium into the chromatographic system. The implementation of in situ aqueous derivatization coupled to preconcentration techniques has permitted the enhancement of recoveries and improvements in the separation, selectivity and sensitivity of the analytical methods.
    Journal of Chromatography A 05/2013; 1296. DOI:10.1016/j.chroma.2013.04.084 · 4.17 Impact Factor
Show more