Article

Self-Assembling Nanocomplexes by combining Ferumoxytol, Heparin And Protamine For Cell Tracking by MRI

Frank Laboratory and Laboratory of Diagnostic Radiology Research, Department of Radiology and Imaging Sciences, US National Institutes of Health, Bethesda, Maryland, USA.
Nature medicine (Impact Factor: 28.05). 02/2012; 18(3):463-7. DOI: 10.1038/nm.2666
Source: PubMed

ABSTRACT We report on a new straightforward magnetic cell-labeling approach that combines three US Food and Drug Administration (FDA)-approved drugs--ferumoxytol, heparin and protamine--in serum-free medium to form self-assembling nanocomplexes that effectively label cells for in vivo magnetic resonance imaging (MRI). We observed that the ferumoxytol-heparin-protamine (HPF) nanocomplexes were stable in serum-free cell culture medium. HPF nanocomplexes show a threefold increase in T2 relaxivity compared to ferumoxytol. Electron microscopy showed internalized HPF in endosomes, which we confirmed by Prussian blue staining of labeled cells. There was no long-term effect or toxicity on cellular physiology or function of HPF-labeled hematopoietic stem cells, bone marrow stromal cells, neural stem cells or T cells when compared to controls. In vivo MRI detected 1,000 HPF-labeled cells implanted in rat brains. This HPF labeling method should facilitate the monitoring by MRI of infused or implanted cells in clinical trials.

0 Followers
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo imaging is increasingly being utilized in studies investigating stem cell-based treatments for neurological disorders. Direct labeling is used in preclinical and clinical studies to track the fate of transplanted cells. To further determine cell viability, experimental studies are able to take advantage of reporter gene technologies. Structural and functional brain imaging can also be used alongside cell imaging as biomarkers of treatment efficacy. Furthermore, it is possible that new imaging techniques could be used to monitor functional integration of stem cell-derived cells with the host nervous system. In this review, we examine recent developments in these areas and identify promising directions for future research at the interface of stem cell therapies and neuroimaging. Copyright © 2014. Published by Elsevier Ltd.
    Current Opinion in Genetics & Development 11/2014; 28. DOI:10.1016/j.gde.2014.09.007 · 8.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
    Frontiers in Chemistry 11/2014; 2(105):1. DOI:10.3389/fchem.2014.00105
  • [Show abstract] [Hide abstract]
    ABSTRACT: Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3þ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking
    Journal of Magnetism and Magnetic Materials 09/2014; 380. DOI:10.1016/j.jmmm.2014.09.001 · 2.00 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
May 22, 2014