Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies.

Centre for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Centre, Institute on Ageing, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6021, USA.
Brain (Impact Factor: 10.23). 03/2012; 135(Pt 3):807-18. DOI: 10.1093/brain/aws013
Source: PubMed

ABSTRACT The microtubule-binding protein, tau, is the major component of neurofibrillary inclusions characteristic of Alzheimer's disease and related neurodegenerative tauopathies. When tau fibrillizes, it undergoes abnormal post-translational modifications resulting in decreased solubility and altered microtubule-stabilizing properties. Recently, we reported that the abnormal acetylation of tau at lysine residue 280 is a novel, pathological post-translational modification. Here, we performed detailed immunohistochemistry to further examine acetylated-tau expression in Alzheimer's disease and other major tauopathies. Immunohistochemistry using a polyclonal antibody specific for acetylated-tau at lysine 280 was conducted on 30 post-mortem central nervous system regions from patients with Alzheimer's disease (10 patients), corticobasal degeneration (5 patients), and progressive supranuclear palsy (5 patients). Acetylated-tau pathology was compared with the sequential emergence of other tau modifications in the Alzheimer's disease hippocampus using monoclonal antibodies to multiple well-characterized tau epitopes. All cases studied showed significant acetylated-tau pathology in a distribution pattern similar to hyperphosphorylated-tau. Acetylated-tau pathology was largely in intracellular, thioflavin-S-positive tau inclusions in Alzheimer's disease, and also thioflavin-S-negative pathology in corticobasal degeneration and progressive supranuclear palsy. Acetylated-tau was present throughout all stages of Alzheimer's disease pathology, but was more prominently associated with pathological tau epitopes in moderate to severe-stage cases. These temporal and morphological immunohistochemical features suggest acetylation of tau at this epitope is preceded by early modifications, including phosphorylation, and followed by later truncation events and cell death in Alzheimer's disease. Acetylation of tau at lysine 280 is a pathological modification that may contribute to tau-mediated neurodegeneration by both augmenting losses of normal tau properties (reduced solubility and microtubule assembly) as well as toxic gains of function (increased tau fibrillization). Thus, inhibiting tau acetylation could be a disease-modifying target for drug discovery target in tauopathies.

Download full-text


Available from: David J Irwin, Jul 02, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and fronto-temporal dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins occurs alongside neuronal degeneration in somewhat specific brain areas, depending on the disorder and the stage of the disease. However, we still do not fully understand the mechanisms governing protein aggregation, and whether this constitutes a protective or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known as Lewy bodies, and is phosphorylated at serine 129. Other residues have also been shown to be phosphorylated, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. In AD and in FTD, hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our understanding of the precise consequences of tau phosphorylation in the biology and pathophysiology of the protein is still limited. Through the use of a variety of model organisms and technical approaches, we are now gaining stronger insight into the effects of phosphorylation in the behavior of these proteins. In this review, we cover recent findings in the field and discuss how targeting phosphorylation events might be used for therapeutic intervention in these devastating diseases of the nervous system.
    Frontiers in Molecular Neuroscience 05/2014; 7. DOI:10.3389/fnmol.2014.00042
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sleep disturbances may cause distress among individuals with attention-deficit/hyperactivity disorder (ADHD), but few studies have examined the impact of stimulant pharmacotherapy for ADHD on sleep in adults. These post hoc analyses included sleep data collected with the Pittsburgh Sleep Quality Index (PSQI), a self-rated questionnaire, from 831 adults with DSM-IV-TR-defined ADHD in 2 large, randomized, double-blind, placebo-controlled, forced-dose titration studies of lisdexamfetamine (N = 420; conducted from May 25, 2006, to November 16, 2006) and triple-bead mixed amphetamine salts (MAS) (N = 411; conducted from April 25, 2005, to November 4, 2005). Change from baseline to endpoint in PSQI clinically meaningful change categories (ie, "decrease," "no change," or "increase") was analyzed by treatment group in each study using the χ² test. The Cochran-Mantel-Haenszel method was used (1) to determine whether there was a statistically significant difference in Clinical Global Impressions-Improvement (CGI-I) score of 1 or 2 (improved) versus > 2 (not improved) relative to a decrease or an increase in PSQI and (2) to analyze shifts from good sleep at baseline (PSQI ≤ 5) to poor sleep at endpoint (PSQI > 5). Impaired sleep (PSQI score > 5) relative to baseline was demonstrated in 8.3% and 9.7% of the treatment and placebo groups, respectively (P = .18), in the MAS study and 7.7% and 8.2%, respectively (P = .03), in the lisdexamfetamine study. Clinically meaningful change in baseline to endpoint PSQI was not statistically significantly different between treatment and placebo groups in either study. A significant difference in CGI-I 1 and 2 relative to an increase or decrease in PSQI was found in both the triple-bead MAS (P < .0001) and the lisdexamfetamine (P = .0008) trials. More subjects with improved CGI-I rating of 1 or 2 had improvement in PSQI than had worsening. Approximately one-third of subjects receiving treatment or placebo had clinically meaningful sleep improvement, emphasizing that change in sleep quality during treatment may not necessarily be related to stimulant therapy. When managing complaints of sleep difficulties in ADHD subjects, clinicians should undertake a broad assessment and consider underlying conditions that may contribute to sleep disruption. Identifiers: NCT00334880 and NCT00152022.
    The Journal of Clinical Psychiatry 07/2011; 72(7):903-8. DOI:10.4088/JCP.11m06838 · 5.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathological accumulation of the microtubule-binding protein tau is linked to an increasing number of neurodegenerative conditions associated with aging, though the mechanisms by which tau accumulates in disease are unclear. In this review, we will summarize our previous research assessing the mechanism of action, as well as the therapeutic potential of Hsp90 inhibition for the treatment of tauopathies. Specifically, we describe the development of a high-throughput screening approach to identify and rank compounds, and demonstrate the selective elimination of aberrant p-tau species in the brain following treatment with an Hsp90 inhibitor. Additionally, we identify CHIP as an essential component of the Hsp90 chaperone complex that mediates tau degradation, and present evidence to suggest that CHIP functions to identify and sequester neurotoxic tau species. Finally, we discuss recent data identifying an additional mechanism by which CHIP modulates protein triage decisions involving Hsp90. Specifically, CHIP indirectly regulates Hsp90 chaperone activity by modulating steady-state levels of the Hsp90 deacetylase, HDAC6, thus influencing both the acetylation state and function of Hsp90. Thus future research directions will focus on the manipulation of this network to promote degradation of pathogenic tau species in disease.
    Journal of Alzheimer's disease: JAD 05/2012; 33. DOI:10.3233/JAD-2012-129008 · 3.61 Impact Factor