Article

Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies.

Centre for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Alzheimer's Disease Core Centre, Institute on Ageing, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6021, USA.
Brain (Impact Factor: 10.23). 03/2012; 135(Pt 3):807-18. DOI: 10.1093/brain/aws013
Source: PubMed

ABSTRACT The microtubule-binding protein, tau, is the major component of neurofibrillary inclusions characteristic of Alzheimer's disease and related neurodegenerative tauopathies. When tau fibrillizes, it undergoes abnormal post-translational modifications resulting in decreased solubility and altered microtubule-stabilizing properties. Recently, we reported that the abnormal acetylation of tau at lysine residue 280 is a novel, pathological post-translational modification. Here, we performed detailed immunohistochemistry to further examine acetylated-tau expression in Alzheimer's disease and other major tauopathies. Immunohistochemistry using a polyclonal antibody specific for acetylated-tau at lysine 280 was conducted on 30 post-mortem central nervous system regions from patients with Alzheimer's disease (10 patients), corticobasal degeneration (5 patients), and progressive supranuclear palsy (5 patients). Acetylated-tau pathology was compared with the sequential emergence of other tau modifications in the Alzheimer's disease hippocampus using monoclonal antibodies to multiple well-characterized tau epitopes. All cases studied showed significant acetylated-tau pathology in a distribution pattern similar to hyperphosphorylated-tau. Acetylated-tau pathology was largely in intracellular, thioflavin-S-positive tau inclusions in Alzheimer's disease, and also thioflavin-S-negative pathology in corticobasal degeneration and progressive supranuclear palsy. Acetylated-tau was present throughout all stages of Alzheimer's disease pathology, but was more prominently associated with pathological tau epitopes in moderate to severe-stage cases. These temporal and morphological immunohistochemical features suggest acetylation of tau at this epitope is preceded by early modifications, including phosphorylation, and followed by later truncation events and cell death in Alzheimer's disease. Acetylation of tau at lysine 280 is a pathological modification that may contribute to tau-mediated neurodegeneration by both augmenting losses of normal tau properties (reduced solubility and microtubule assembly) as well as toxic gains of function (increased tau fibrillization). Thus, inhibiting tau acetylation could be a disease-modifying target for drug discovery target in tauopathies.

1 Follower
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A link between Tau phosphorylation and aggregation has been shown in different models for Alzheimer disease, including yeast. We used human Tau purified from yeast models to generate new monoclonal antibodies, of which three were further characterized. The first antibody, ADx201, binds the Tau proline-rich region independently of the phosphorylation status, while the second, ADx215, detects an epitope formed by the Tau N-terminus when Tau is not phosphorylated at Tyr18. For the third antibody, ADx210, the binding site could not be determined since its epitope is probably conformational. All three antibodies stained tangle-like structures in different brain sections of THY-Tau22 transgenic mice and Alzheimer patients and ADx201 and ADx210 also detected neuritic plaques in the cortex of the patient brains. In hippocampal homogenates from THY-Tau22 mice and cortex homogenates obtained from Alzheimer patients, ADx215 consistently stained specific low-order Tau oligomers in diseased brain, which in size correspond to Tau dimers. ADx201 and ADx210 additionally reacted to higher-order Tau oligomers and presumed prefibrillar structures in the patient samples. Our data further suggest that formation of low-order Tau oligomers marks an early disease stage that is initiated by Tau phosphorylation at N-terminal sites. Formation of higher-order oligomers appears to require additional phosphorylation in the C-terminus of Tau. When used to assess Tau levels in human cerebrospinal fluid, the antibodies permitted to discriminate patients with Alzheimer disease or other dementia like vascular dementia, indicative that these antibodies hold promising diagnostic potential. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 12/2014; DOI:10.1074/jbc.M114.627919 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Filamentous tau pathologies are hallmark lesions of several neurodegenerative tauopathies including Alzheimer's disease (AD) and corticobasal degeneration (CBD) which show cell type-specific and topographically distinct tau inclusions. Growing evidence supports templated transmission of tauopathies through functionally interconnected neuroanatomical pathways suggesting that different self-propagating strains of pathological tau could account for the diverse manifestations of neurodegenerative tauopathies. Here, we describe the rapid and distinct cell type-specific spread of pathological tau following intracerebral injections of CBD or AD brain extracts enriched in pathological tau (designated CBD-Tau and AD-Tau, respectively) in young human mutant P301S tau transgenic (Tg) mice (line PS19) ~6-9 months before they show onset of mutant tau transgene-induced tau pathology. At 1 month post-injection of CBD-Tau, tau inclusions developed predominantly in oligodendrocytes of the fimbria and white matter near the injection sites with infrequent intraneuronal tau aggregates. In contrast, injections of AD-Tau in young PS19 mice induced tau pathology predominantly in neuronal perikarya with little or no oligodendrocyte involvement 1 month post-injection. With longer post-injection survival intervals of up to 6 months, CBD-Tau- and AD-Tau-induced tau pathology spread to different brain regions distant from the injection sites while maintaining the cell type-specific pattern noted above. Finally, CA3 neuron loss was detected 3 months post-injection of AD-Tau but not CBD-Tau. Thus, AD-Tau and CBD-Tau represent specific pathological tau strains that spread differentially and may underlie distinct clinical and pathological features of these two tauopathies. Hence, these strains could become targets to develop disease-modifying therapies for CBD and AD.
    Acta Neuropathologica 12/2014; 129(2). DOI:10.1007/s00401-014-1373-0 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease.
    12/2014; 23(4):292-313. DOI:10.5607/en.2014.23.4.292

Full-text (2 Sources)

Download
63 Downloads
Available from
May 22, 2014