A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis

College of Life Science, Liaoning Normal University, Dalian, 116029, PR China.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology (Impact Factor: 1.55). 02/2012; 162(1-3):34-43. DOI: 10.1016/j.cbpb.2012.02.002
Source: PubMed


Lysozyme is an important component of the immune response against bacteria that is characterized by its ability to break down bacterial cell-walls. We constructed a high-quality cDNA library from mantle tissue of adult Japanese scallop (Mizuhopecten yessoensis). The EST which is high homology with g-type lysozyme genes of other species was found in the cDNA library. In the present study, the complete express sequence of g-type lysozyme genes from Japanese scallop (designated as MyLysoG) was directly obtained by PCR. The complete sequence of MyLysoG cDNA consisted of a 5' untranslated region (UTR) of 25 bp, an open reading frame (ORF) of 606 bp, and a 3' UTR of 100 bp with one polyadenylation signal (AATAAA). The deduced amino acids of MyLysoG were 201 amino acids with a putative signal peptide of 18 amino acid residues. It shared the sequence similarity and the common structure features with the g-type lysozyme from other species. Quantitative reverse trancriptase real-time PCR (qRT-PCR) assay demonstrated that mRNA transcripts of g-type lysozyme could be detected in various tissues of unchallenged scallop, and the highest expression of MyLysoG was detected in hepatopancreas tissue. The temporal expression of MyLysoG in hemolymph after Vibrio anguillarum challenge was up-regulated and reached the maximum level at 3h post stimulation, and then dropped back to the original level even lower than the control group. Furthermore, a 978 bp of 5'-flanking sequence of MyLysoG was identified by genome walking, and several potential transcription factor binding sites (TFBS) were detected in the putative promoter region. One part of the MyLysoG promoter region contains nine sites of SNPs and three sites of insert-deletion (indel) polymorphisms, and these mutations were found organize into two haplotypes. The two haplotypes were associated with different TFBS. The haplotypes could be selected to analyze the transcriptional-level control of scallop g-type lysozyme gene and the scallop immune system.

1 Follower
27 Reads
  • Source
    • "In the control tank, another 15 fishes received an intraperitoneal injection of 0.1 ml of phosphate-buffered saline. For every time point, three fishes [13,38] from each tank were sacrificed at 1, 3, 6, 12 and 24 h post-injection (hpi). The samples of spleen, kidney and liver were collected from each fish, preserved in Trizol reagent (Invitrogen, CA, USA), and stored at -80°C until use. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type) and goose-type (g-type) lysozymes from Asian seabass (Lates calcarifer). The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu(50) and Asp(67)) and a "GSTDYGIFQINS" motif. The deduced g-type lysozyme contained 187 residues and possessed a goose egg white lysozyme (GEWL) domain containing three conserved catalytic residues (Glu(71), Asp(84), Asp(95)) essential for catalytic activity. Real time quantitative PCR (qRT-PCR) revealed that the two lysozyme genes were constitutively expressed in all the examined tissues. The c-type lysozyme was most abundant in liver, while the g-type lysozyme was predominantly expressed in intestine and weakly expressed in muscle. The c-type and g-type transcripts were up-regulated in the kidney, spleen and liver in response to a challenge with Vibrio harveyi. The up-regulation of the c-type lysozyme was much stronger than that of the g-type lysozyme in kidney and spleen. The recombinant proteins of the c-type and g-type lysozymes showed lytic activities against the bacterial pathogens Vibrio harveyi and Photobacterium damselae in a dosage-dependent manner. We identified single nucleotide polymorphisms (SNPs) in the two lysozyme genes. There were significant associations of these polymorphisms with resistance to the big belly disease. These results suggest that the c- and g-type genes play an important role in resistance to bacterial pathogens in fish. The SNP markers in the two genes associated with the resistance to bacterial pathogens may facilitate the selection of Asian seabass resistant to bacterial diseases.
    PLoS ONE 11/2013; 8(11):e79743. DOI:10.1371/journal.pone.0079743 · 3.23 Impact Factor
  • Source
    • "GTL was first identified in egg whites of Embden goose [10] and subsequently in other vertebrates [11e14]. In addition , invertebrate GTLs have been identified in urochordates [15] and several mollusc species, including the bay scallop [16], Zhikong scallop [17], Japanese scallop [18], and mussel [19]. Information regarding the innate immune system and defense mechanisms of the abalone against microbial pathogens are limited. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysozymes are ubiquitously distributed enzymes with hydrolytic activity against bacterial peptidoglycan and function to protect organisms from microbial pathogens. In this study, an invertebrate goose-type lysozyme, designated as abLysG, was identified in the disk abalone, Haliotis discus discus. The full-length cDNA of abLysG was 894 bp in length with an open reading frame of 789 bp encoding a polypeptide of 263 amino acids containing a signal peptide and a characteristic soluble lytic transglycosylase domain. Six cysteine residues and two catalytic residues (Glu(142) and Asp(168)) conserved among molluscs were also identified. The 3D homology structural models of abLysG and hen egg white lysozyme had similar conformations of the active sites involved in the binding of substrate. BAC sequence data revealed that the genomic structure of disk abalone g-type lysozyme comprises 7 exons with 6 intervening introns. The deduced amino acid sequence of abLysG shared 45.2-61.6% similarity with those of other molluscs and vertebrates. The TFSEARCH server predicted a variety of transcription factor-binding sites in the 5'-flanking region of the abLysG gene, some of which are involved in transcriptional regulation of the lysozyme gene. abLysG expression was detected in multiple tissues with the highest expression in mantle. Moreover, qPCR analysis of abLysG mRNA expression demonstrated significant up-regulation in gill in response to infection by live bacteria (Vibrio parahaemolyticus and Listeria monocytogenes), virus (viral hemorrhagic septicemia) and bacterial mimics (LPS and PGN). Expression of the recombinant disk abalone g-type lysozyme in Escherichia coli BL21, demonstrated its bacteriolytic activity against several Gram-negative and Gram-positive bacterial species. Collectively these data suggest that abLysG is an antimicrobial enzyme with a potential role in the disk abalone innate immune system to protect it from bacterial and viral infections.
    Fish &amp Shellfish Immunology 08/2013; 35(5). DOI:10.1016/j.fsi.2013.07.048 · 2.67 Impact Factor
  • Source
    • "In contrast, the genomic organizations of many LysGs have been reported. In vertebrates, the number of exons ranges from five in fish (He et al., 2012; Ponce et al., 2011) to seven in humans (Irwin and Gong, 2003). These structural differences in genomic organization of different lysozymes could be correlated with distinct evolutionary events. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysozyme is an important enzyme in the innate immune system that plays a vital role in fighting microbial infections. In the current study, we identified, cloned, and characterized a gene that encodes an invertebrate-type lysozyme from the disk abalone, Haliotis discus discus (abLysI). The full-length cDNA of abLysI consisted of 545 bp with an open reading frame of 393 bp that encodes 131 amino acids. The theoretical molecular mass of mature abLysI was 12.3 kDa with an isoelectric point of 8.03. Conserved features in other homologs, such as catalytic sites for lytic activity (Glu(30) and Asp(41)), isopeptidase activity (His(107)), and ten cysteine residues were identified in abLysI. Genomic sequence analysis with respect to its cDNA showed that abLysI was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative promoter region. Homology and phylogeny analysis of abLysI depicted high identity and closer proximity, respectively, with an annelid i-type lysozyme from Hirudo medicinalis, and indicated that abLysI is a novel molluscan i-type lysozyme. Tissue-specific expressional studies revealed that abLysI is mainly transcribed in hepatopancreas followed by mantle. In addition, abLysI mRNA expression was induced following bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and viral (viral hemorrhagic septicemia virus) challenges. Recombinantly expressed abLysI [(r)abLysI] demonstrated strong lytic activity against Micrococcus lysodeikticus, isopeptidase activity, and antibacterial activity against several Gram-positive and Gram-negative bacteria. Moreover, (r)abLysI showed optimum lytic activity at pH 4.0 and 60°C, while exhibiting optimum isopeptidase activity at pH 7.0. Taken together, these results indicate that abLysI is potentially involved in immune responses of the disk abalone to protect it from invaders.
    Developmental and comparative immunology 06/2013; 41(2). DOI:10.1016/j.dci.2013.06.009 · 2.82 Impact Factor
Show more