Increased retinoic acid levels through ablation of Cyp26b1 determine the processes of embryonic skin barrier formation and peridermal development.

Developmental Skin Biology Section, NIAMS, NIH, Bethesda, MD 20892, USA.
Journal of Cell Science (Impact Factor: 5.33). 02/2012; 125(Pt 7):1827-36. DOI: 10.1242/jcs.101550
Source: PubMed

ABSTRACT The process by which the periderm transitions to stratified epidermis with the establishment of the skin barrier is unknown. Understanding the cellular and molecular processes involved is crucial for the treatment of human pathologies, where abnormal skin development and barrier dysfunction are associated with hypothermia and perinatal dehydration. For the first time, we demonstrate that retinoic acid (RA) levels are important for periderm desquamation, embryonic skin differentiation and barrier formation. Although excess exogenous RA has been known to have teratogenic effects, little is known about the consequences of elevated endogenous retinoids in skin during embryogenesis. Absence of cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1), a retinoic-acid-degrading enzyme, results in aberrant epidermal differentiation and filaggrin expression, defective cornified envelopes and skin barrier formation, in conjunction with peridermal retention. We show that these alterations are RA dependent because administration of exogenous RA in vivo and to organotypic skin cultures phenocopy Cyp26b1(-/-) skin abnormalities. Furthermore, utilizing the Flaky tail (Ft/Ft) mice, a mouse model for human ichthyosis, characterized by mutations in the filaggrin gene, we establish that proper differentiation and barrier formation is a prerequisite for periderm sloughing. These results are important in understanding pathologies associated with abnormal embryonic skin development and barrier dysfunction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency.
    PLoS ONE 07/2013; 8(7):e67869. DOI:10.1371/journal.pone.0067869 · 3.53 Impact Factor
  • Journal of Biological Chemistry 11/2012; 287(47):39304-39315. DOI:10.1074/jbc.M112.397273 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hprt-Cre doubles the prevalence of homozygous null embryos per litter versus heterozygous breedings without decreasing litter size. Resulting mutant embryos are genotypically and phenotypically equivalent between strategies. We set out to confirm the effectiveness of this approach with other alleles and hypothesized that it would increase efficiency in generating compound mutants. Null mutants for Cyp26b1, Pitx2, and Shh were generated with Hprt-Cre from conditional alleles as were double and triple allelic combinations of Fgfr2IIIb, Raldh2, and Cyp26b1. Embryos were genotyped and phenotyped by whole mount photography, histology, and immunohistochemistry. Fifty percent of Hprt-Cre litters were homozygous null for Cyp26b1 (15/29) and Pitx2 (75/143), with phenotypic and genotypic equivalence to mutants from standard heterozygous breedings. In multi-allele breedings, mutant embryos constituted half of litters without significant embryo loss. In contrast, Shh breedings yielded a smaller ratio of embryos carrying two recombined alleles (6 of 16), with a significant litter size reduction because of early embryonic lethality (16 live embryos from 38 deciduae). Hprt-Cre can be used to efficiently generate large numbers of mutant embryos with a number of alleles. Compound mutant generation was equally efficient. However, efficiency is reduced for genes whose protein product potentially interacts with the Hprt pathway (e.g., Shh).
    Journal of Surgical Research 10/2013; 187(2). DOI:10.1016/j.jss.2013.10.046 · 2.12 Impact Factor