Article

A humanized IgG but not IgM antibody is effective in prophylaxis and therapy of yellow fever infection in an AG129/17D-204 peripheral challenge mouse model

Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, 80523, USA.
Antiviral research (Impact Factor: 3.43). 02/2012; 94(1):1-8. DOI: 10.1016/j.antiviral.2012.02.001
Source: PubMed

ABSTRACT Yellow fever virus (YFV), a member of the genus Flavivirus, is a mosquito-borne virus found in tropical regions of Africa and South America that causes severe hepatic disease and death in humans. Despite the availability of effective vaccines, YFV is responsible for an estimated 200,000 cases and 30,000 deaths annually. There are currently no prophylactic or therapeutic strategies approved for use in human YFV infections. Furthermore, implementation of YFV 17D-204 vaccination campaigns has become problematic due to an increase in reported post-vaccinal adverse events. We have created human/murine chimeric MAbs of a YFV-reactive murine monoclonal antibody (mMAb), 2C9, that was previously shown to protect mice from lethal YFV infection and to have therapeutic activity. The new chimeric (cMAbs) were constructed by fusion of the m2C9 IgG gene variable regions with the constant regions of human IgG and IgM and expressed in Sp2 murine myelomas. The 2C9 cMAbs (2C9-cIgG and 2C9-cIgM) reacted with 17D-204 vaccine strain in an enzyme-linked immunosorbent assay and neutralized virus in vitro similarly to the parent m2C9. Both m2C9 and 2C9-cIgG when administered prophylactically 24h prior to infection protected AG129 mice from peripheral 17D-204 challenge at antibody concentrations ≥1.27 μg/mouse; however, the 2C9-cIgM did not protect even at a dose of 127 μg/mouse. The 17D-204 infection of AG129 mice is otherwise uniformly lethal. While the m2C9 was shown previously to be therapeutically effective in YFV-infected BALB/c mice at day 4 post-infection, the m2C9 and 2C9-cIgG demonstrated therapeutic activity only when administered 1 day post-infection in 17D-204-infected AG129 mice.

Download full-text

Full-text

Available from: Joseph Piper, Jul 04, 2015
0 Followers
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.
    08/2013; 2013:838491. DOI:10.1155/2013/838491
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews recent advances achieved during recent years on various aspects of antibody humanization theories and techniques. Common methods for producing humanized antibodies including framework-homology-based humanization, germline humanization, complementary determining regions (CDR)-homology-based humanization and specificity determining residues (SDR) grafting, as well as advantages and disadvantages of each of these methods and their applications are discussed.
    Biotechnology & genetic engineering reviews 10/2013; 29(2):175-86. DOI:10.1080/02648725.2013.801235 · 1.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV) is the most common cause of viral encephalitis in Asia, and it is increasingly a global public health concern due to its recent geographic expansion. While commercial vaccines are available and used in some endemic countries, JEV continues to be a public health problem, with 50,000 cases reported annually. Research with virulent JEV in mouse models to develop new methods of prevention and treatment is restricted to BSL-3 containment facilities, confining these studies to investigators with access to these facilities. We have developed an adult small animal peripheral challenge model using interferon-deficient AG129 mice and the JEV live-attenuated vaccine SA14-14-2, thus requiring only BSL-2 containment. A low dose of virus (10PFU/0.1ml) induced 100% morbidity in infected mice. Increased body temperatures measured by implantable temperature transponders correlated with an increase in infectious virus and viral RNA in serum, spleen and brain as well as an increase in pro-inflammatory markers measured by a 58-biomarker multi-analyte profile (MAP) constructed during the course of infection. In the future, the MAP measurements can be used as a baseline for comparison in order to better assess the inhibition of disease progression by other prophylactic and therapeutic agents. The use of the AG129/JEV SA14-14-2 animal model makes vaccine and therapeutic studies feasible for laboratories with limited biocontainment facilities.
    Vaccine 11/2013; 32(2). DOI:10.1016/j.vaccine.2013.11.016 · 3.49 Impact Factor