Article

Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide

Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 02/2012; 419(3):495-9. DOI: 10.1016/j.bbrc.2012.02.042
Source: PubMed

ABSTRACT In type 2 diabetes mellitus (T2DM), misfolded human islet amyloid polypeptide (hIAPP) forms amyloid deposits in pancreatic islets. These amyloid deposits contribute to the dysfunction of β-cells and the loss of β-cell mass in T2DM patients. Inhibition of hIAPP fibrillization has been regarded as a potential therapeutic approach for T2DM. Silibinin, a major active flavonoid extracted from herb milk thistle (Silybum marianum), has been used for centuries to treat diabetes in Asia and Europe with unclear mechanisms. In this study, we tested whether silibinin has any effect on the amyloidogenicity of hIAPP. Our results provide first evidence that silibinin inhibits hIAPP fibrillization via suppressing the toxic oligomerization of hIAPP and enhances the viability of pancreatic β-cells, therefore silibinin may serve as a potential therapeutic agent for T2DM.

0 Bookmarks
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amylin is the 37-residue peptide hormone produced by the islet -cells in the pancreas and the formation of amylin aggregates is strongly associated with -cells degeneration in type 2 diabetes, as demonstrated by more than 95% of patients exhibiting amylin amyloid upon autopsy. It is widely recognized that metal ions such as copper(II) have been implicated in the aggregation process of amyloidogenic peptides such as A and -synuclein and there is evidence that also amylin self-assembly is largely affected by copper(II). For this reason, in this work, the role of copper(II) in the aggregation of amylin has been investigated by several different experimental approaches. Mass spectrometric investigations show that copper(II) induces significant changes in the amylin structure which decrease the protein fibrillogenesis as observed by ThT measurements. Accordingly, solid-state NMR experiments together with computational analysis carried out on a model amylin fragment confirmed the non fibrillogenic nature of the copper(II) induced aggregated structure. Finally, the presence of copper(II) is also shown to have a major influence on amylin proneness to be degraded by proteases and cytotoxicity studies on different cell cultures are reported.
    Metallomics 07/2014; 6(10). DOI:10.1039/C4MT00130C · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human islet amyloid polypeptide (hIAPP) fibril is the major constituent of amyloid deposits in pancreatic islets of type 2 diabetes. Misfolding and hIAPP fibril formation are thought to be important in the pathogenesis of diabetes. Studies have showed that selenium-containing phycocyanin (Se-PC) inhibited the fibrillation of hIAPP to form nanoscale particles, which is mainly by interfering with the combination between hIAPP. Small nanoscale oligomers tended to grow into larger nanoparticles and the size of nanoparticles increased with the incubation time. By interfering with the fibrillation of hIAPP and altering the structure, Se-PC alleviated hIAPP-induced cell apoptosis. Meantime, generation of ROS produced during the fibrillation process was inhibited, which was proposed to be the main factor for the hIAPP-cytotoxicity in beta cells. Taken together, Se-PC inhibited hIAPP fibrillation, thus suppressed the formation of ROS to show protective effect on hIAPP mediated cell apoptosis. Our studies provide useful information for our understanding of the interaction mechanisms of Se-PC on hIAPP structure and protective mechanisms on hIAPP cytotoxicity, presenting useful candidate for anti-diabetes drug development.
    Biomaterials 07/2014; 35(30). DOI:10.1016/j.biomaterials.2014.06.056 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal protein folding and self-assembly causes over 30 cureless human diseases for which no disease-modifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies - the green-tea derivative (-)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01's effects on amyloid beta-protein, alpha-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.
    12/2013; 4(4-4):385-409. DOI:10.2478/s13380-013-0137-y