Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene

Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551 Hiroshima, Japan.
Journal of Psychiatric Research (Impact Factor: 4.09). 02/2012; 46(5):635-43. DOI: 10.1016/j.jpsychires.2012.01.026
Source: PubMed

ABSTRACT Histone acetylation, which alters the compact chromatin structure and changes the accessibility of DNA to regulatory proteins, is emerging as a fundamental mechanism for regulating gene expression. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance fear extinction. In this study, we examined whether vorinostat, an HDAC inhibitor, facilitates fear extinction, using a contextual fear conditioning (FC) paradigm, in Sprague-Dawley rats. We found that vorinostat facilitated fear extinction. Next, the levels of global acetylated histone H3 and H4 were measured by Western blotting. We also assessed the effect of vorinostat on the hippocampal levels of NMDA receptor mRNA by real-time quantitative PCR (RT-PCR) and protein by Western blotting. 2 h after vorinostat administration, the levels acetylated histones and NR2B mRNA, but not NR1 or NR2A mRNA, were elevated in the hippocampus. The NR2B protein level was elevated 4 h after vorinostat administration. Last, we investigated the levels of acetylated histones and phospho-CREB (p-CREB) binding at the promoter of the NR2B gene using the chromatin immunoprecipitation (ChIP) assay followed by RT-PCR. The ChIP assay revealed increases in the levels of acetylated histones and they were accompanied by enhanced binding of p-CREB to its binding site at the promoter of the NR2B gene 2 h after vorinostat administration. These findings suggest that vorinostat increases the expression of NR2B in the hippocampus by enhancing histone acetylation, and this process may be implicated in fear extinction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orchestration of gene-expression programs is essential for cellular homeostasis. Epigenetic processes provide to the cell a key mechanism that allows the regulation of gene-expression networks in response to environmental stimuli. Recently epigenetic mechanisms such as histone-modifications have been implicated with cognitive function and altered epigenome plasticity has been linked to the pathogenesis of neurodegenerative and neuropsychiatric diseases. Thus, key regulators of epigenetic gene-expression have emerged as novel drug targets for brain diseases. Numerous recent review articles discuss in detail the current findings of epigenetic processes in brain diseases. The aim of this article is not to give yet another comprehensive overview of the field but to specifically address the question why the same epigenetic therapies that target histone-acetylation may be suitable to treat seemingly different diseases such as Alzheimer's disease and post-traumatic stress disorder.
    Frontiers in Neuroscience 06/2014; 8:160. DOI:10.3389/fnins.2014.00160
  • Biological psychiatry 07/2012; 72(1):2-3. DOI:10.1016/j.biopsych.2012.04.033 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Mood and anxiety disorders are among the major causes of disability worldwide. Despite clear need for better therapies, efforts to develop novel drugs have been relatively unsuccessful. One major reason is lack of translation into neuropsychopharmacology of the impressive recent array of knowledge accrued by clinical and preclinical researches on the brain. Here focus is on epigenetics mechanisms, including microRNAs, which seem particularly promising for the identification of new targets for alternative pharmacological approaches. Areas covered: First, the current knowledge about epigenetic mechanisms, including DNA methylation, posttranslational modification of histone proteins, focusing on histone methylation and acetylation, and posttranscriptional modulation of gene expression by microRNAs is described. Then evidence showing involvement of epigenetics and microRNAs in the pathophysiology of mood and anxiety disorders as well as evidence showing that some of the currently employed antidepressants and mood stabilizers also affect epigenetic and microRNA mechanisms are reviewed. Finally current evidence and novel approaches in favor of drugs regulating epigenetic and microRNA mechanisms as potential therapeutics for these disorders are discussed. Expert opinion: Although still in its infancy, research investigating the effects of pharmacological modulation of epigenetic and microRNA mechanisms in neuropsychiatric disorders continues to provide encouraging findings, suggesting new avenues for treatment of mood and anxiety disorders.
    Expert Opinion on Investigational Drugs 12/2012; DOI:10.1517/13543784.2013.749237 · 5.43 Impact Factor