Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents.

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
PLoS ONE (Impact Factor: 3.73). 01/2012; 7(2):e31462. DOI: 10.1371/journal.pone.0031462
Source: PubMed

ABSTRACT Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos--a marker of cellular activation--in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Significant comorbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward-driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the interrelationships between metabolism, stress, and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease.
    Cell metabolism 03/2014; · 17.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ghrelin, the endogenous ligand for growth hormone secretagogue receptor 1a (GHS-R1a), stimulates food intake in mammals centrally and peripherally. In contrast, central injection of ghrelin inhibits feeding in neonatal chicks (Gallus gallus), which is thought to be mediated by the corticotrophin-releasing hormone (CRH) system, indicating that the mechanisms underlying ghrelin’s action are different in chicks and mammals. However, the interaction between the ghrelin system and the CRH system has not been fully clarified in chicks. In the present study, we examined the effect of intracerebroventricular (ICV) injection of CRH and urocortin-3 (UCN-3), a CRH family peptide and an endogenous ligand for the CRH type-2 receptor (CRH-R2), on synthesis and secretion of ghrelin in chicks. ICV injection of UCN-3 but not CRH increased plasma ghrelin concentration (P < 0.05), diencephalic mRNA expression of ghrelin and GHS-R1a (P < 0.05), and tended to decrease ghrelin (P = 0.08) and GHS-R1a (P = 0.10) mRNA expression in the proventriculus. Moreover, ICV injection of UCN-3 tended to increase diencephalic mRNA expression of CRH-R2 (P = 0.08) while CRH had no effect on it. In addition, ICV injection of CRH but not UCN-3 increased plasma corticosterone concentration (P < 0.05) and decreased the diencephalic mRNA expression of CRH-R1 (P < 0.05). These results clearly indicate that the roles of the CRH system for the ghrelin system are divided. The present study suggests that UCN-3 is mainly involved in the ghrelin system in chicks perhaps through the CRH-R2.
    Domestic animal endocrinology 01/2014; · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overconsumption of palatable energy-dense foods has negative health implications and it is associated with obesity and several eating disorders. Currently, little is known about the neuronal circuitries activated by the acute ingestion of a rewarding stimulus. Here, we used a combination of immunohistochemistry, pharmacology and neuronal tracing analyses to examine the role of the mesolimbic system in general, and the orexin neurons in particular, in a simple experimental test in which naïve mice are allowed to spontaneously eat a pellet of a high fat diet (HFD) for 2 h. We found that acute HFD activates c-Fos expression in several reward-related brain areas, including the ventral tegmental area (VTA), nucleus accumbens, central amygdala and lateral hypothalamic area. We also found that: i- HFD-mediated orosensory stimulation was required for the mesolimbic pathway activation, ii- acute HFD differentially activates dopamine neurons of the paranigral, parabrachial pigmented and interfascicular sub-regions of the VTA, and iii- orexin neurons of the lateral hypothalamic area are responsive to acute HFD. Moreover, orexin signaling blockade, with the orexin 1 receptor antagonist SB-334867, reduces acute HFD consumption and c-Fos induction in the VTA but not in the other mesolimbic nuclei under study. Finally, we found that most orexin neurons responsive to acute HFD innervate the VTA. Our results show that acute HFD consumption recruits the mesolimbic system and that the full manifestation of this eating behavior requires the activation of orexin signaling.
    PLoS ONE 01/2014; 9(1):e87478. · 3.73 Impact Factor

Full-text (2 Sources)

Available from