Plasma MicroRNA Profiles in Rat Models of Hepatocellular Injury, Cholestasis, and Steatosis

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan.
PLoS ONE (Impact Factor: 3.53). 02/2012; 7(2):e30250. DOI: 10.1371/journal.pone.0030250
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are small RNA molecules that function to modulate the expression of target genes, playing important roles in a wide range of physiological and pathological processes. The miRNAs in body fluids have received considerable attention as potential biomarkers of various diseases. In this study, we compared the changes of the plasma miRNA expressions by acute liver injury (hepatocellular injury or cholestasis) and chronic liver injury (steatosis, steatohepatitis and fibrosis) using rat models made by the administration of chemicals or special diets. Using miRNA array analysis, we found that the levels of a large number of miRNAs (121-317 miRNAs) were increased over 2-fold and the levels of a small number of miRNAs (6-35 miRNAs) were decreased below 0.5-fold in all models except in a model of cholestasis caused by bile duct ligation. Interestingly, the expression profiles were different between the models, and the hierarchical clustering analysis discriminated between the acute and chronic liver injuries. In addition, miRNAs whose expressions were typically changed in each type of liver injury could be specified. It is notable that, in acute liver injury models, the plasma level of miR-122, the most abundant miRNA in the liver, was more quickly and dramatically increased than the plasma aminotransferase level, reflecting the extent of hepatocellular injury. This study demonstrated that the plasma miRNA profiles could reflect the types of liver injury (e.g. acute/chronic liver injury or hepatocellular injury/cholestasis/steatosis/steatohepatitis/fibrosis) and identified the miRNAs that could be specific and sensitive biomarkers of liver injury.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiotoxicity and musculoskeletal toxicity can be life-threatening, and thus have strong impact on both the development and marketing of drugs. Because the conventional biomarkers such as aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase (CK) have low detection power, there has been increasing interest in developing biomarkers with higher detection power. The current study examined the usefulness of several promising biomarkers, cardiac and skeletal muscle troponins (cTnI, cTnT and sTnI), fatty acid binding protein 3 (FABP3) and myosin light chain 3 (MYL3), and compared the obtained data to AST, LDH and CK in rat models treated with various myotoxic and non-myotoxic compounds (isoproterenol, metaproterenol, doxorubicin, mitoxantrone, allylamine, cyclosporine A, cyclophosphamide, aminoglutethimide, acetaminophen, methapyrilene, allylalcohol and α-naphthylisothiocyanate). These promising biomarkers were found to be superior to the conventional biomarkers, as they had a specific and abundant distribution within the heart and/or skeletal muscles; exhibited a positive correlation between the amplitude of increases and the degree of pathological alterations; had higher diagnostic accuracy for detecting pathological alterations; and had the additive effect of improving the diagnostic accuracy of conventional biomarkers. However, these promising biomarkers have several drawbacks including a rapid clearance, the fact that they are affected by renal dysfunction, and different reactivity to the mode of action of individual myotoxicants. In conclusion, the promising biomarkers cTnI, cTnT, FABP3, MYL3, and sTnI demonstrated sensitivity and specificity for cardiac and skeletal myotoxicity that was superior to those of conventional biomarkers, while we should pay attention to the drawbacks of these biomarkers when used in toxicity studies.
    Toxicology 07/2012; 302(2-3). DOI:10.1016/j.tox.2012.07.012 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background miRNAs are non-coding RNAs that regulate gene expression in a wide range of biological contexts, including a variety of diseases. The present study clarified the role of miR-214-5p in hepatic fibrogenesis using human clinical tissue samples, livers from rodent models, and cultured hepatic stellate cells. Methods The expression of miR-214-5p and genes that are involved in liver fibrosis were analyzed in hepatitis C virus-infected human livers, rodent fibrotic livers, a human stellate cell line (LX-2), and the cells from intact mouse livers using real-time PCR. The effect of miR-214-5p overexpression in LX-2 cells on cell function was investigated. Twist-1 expression in the liver tissues of mouse models and primary-cultured stellate cells was also analyzed. Results miR-214-5p was upregulated in human and mouse livers in a fibrosis progression–dependent manner. miR-214-5p expression increased during the culture-dependent activation of mouse primary stellate cells and was significantly higher in stellate cells than in hepatocytes. The overexpression of miR-214-5p in LX-2 cells increased the expression of fibrosis-related genes, such as matrix metalloproteinase (MMP)-2, MMP-9, α-smooth muscle actin, and transforming growth factor (TGF)-β1. TGF-β stimulation induced miR-214-5p in LX-2 cells. Twist-1 was increased in fibrotic mouse livers and induced during mouse stellate cell activation. Conclusion miR-214-5p may play crucial roles in the activation of stellate cells and the progression of liver fibrosis. Twist-1 may regulate miR-214-5p expression in the liver, particularly in stellate cells.
    Fibrogenesis & Tissue Repair 08/2012; 5(1):12. DOI:10.1186/1755-1536-5-12
  • [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) represent the most abundant class of gene expression regulators that bind complementarily to transcripts to repress their translation or mRNA degradation. These small (21-23 nucleotides in length) noncoding RNAs are derived through a multistep process by miRNA genes located in genomic DNA. Because miRNAs regulate fundamental cellular functions, their dysregulation affects a large range of physiological processes, such as development, immune responses, metabolism, and diseases as well as toxicological outcomes. Cancer-related miRNAs have been extensively studied; however, the roles of miRNAs in xenobiotic metabolism and in toxicology have only recently been explored. This review focuses on the current knowledge of miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and the associated potential toxicological implications. The potential modulation of toxicology-related changes in miRNA expression, the role of miRNA in immune-mediated drug-induced liver injuries, the use of circulating miRNAs in body fluids as potential toxicological biomarkers, and the link between miRNA-related pharmacogenomics and adverse drug reactions are highlighted. Expected final online publication date for the Annual Review of Pharmacology and Toxicology Volume 53 is January 06, 2013. Please see for revised estimates.
    Annual Review of Pharmacology 11/2012; 53. DOI:10.1146/annurev-pharmtox-011112-140250 · 18.52 Impact Factor
Show more