Effects of interleukin-6 on extravillous trophoblast invasion in early human pregnancy.

Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, 3rd Floor, William Leech Building, Newcastle-upon-Tyne NE2 4HH, UK.
Molecular Human Reproduction (Impact Factor: 3.48). 02/2012; 18(8):391-400. DOI: 10.1093/molehr/gas010
Source: PubMed

ABSTRACT Invasion of uterine tissues by extravillous trophoblast cells (EVT) is essential for successful human pregnancy. EVT invasion is tightly regulated by a number of factors, including growth factors and cytokines, but the mechanisms that underlie their regulatory effect remain poorly understood. Interleukin (IL)-6 has been suggested to play a role in controlling EVT invasion. We hypothesized that IL-6 produced by cells in uterine decidua would regulate EVT invasiveness via IL-6Rα and gp130 receptors expressed by trophoblast cells. The effect of IL-6 on EVT signalling and cytokine production was also studied. Supernatants from disaggregated 'total' decidual cells, CD8(+) T cells, CD10(+) decidual stromal cells, CD14 macrophages, CD56(+) uterine natural killer cells, cytotrophoblast and EVT cells contained large quantities of IL-6 protein at both 8-10 and 12-14 weeks gestational age. IL-6Rα and gp130 were immunolocalized to EVT in placental bed biopsies from 8 to 20 weeks gestation and IL-6Rα expression was confirmed by western blotting. IL-6 had no effect on the invasive potential of EVT from chorionic villi or the immortalized EVT cell line HTR-8/SVneo in a Matrigel(®) invasion assay. IL-6 stimulated phosphorylation of several cell signalling proteins in EVT (8-14 weeks' gestation), although significance was lost after correction for multiple comparisons. Incubation with IL-6 decreased secretion of regulated upon activation, normal T-cell expressed and secreted (RANTES) by EVT cells. In conclusion, although IL-6 did not affect trophoblast cell invasion, it stimulated EVT cellular cascades and inhibited secretion of RANTES involved in a number of cellular processes.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of pregnancy requires the co-ordinated implantation of the embryo into the receptive decidua, placentation, trophoblast invasion of the maternal decidua and myometrium in addition to remodelling of the uterine spiral arteries. Failure of any of these steps can lead to a range of pregnancy complications, including miscarriage, pre-eclampsia, fetal growth restriction, placenta accreta and pre-term birth. Cytokines are small multifunctional proteins often derived from leucocytes and have primarily been described through their immunomodulatory actions. The maternal-fetal interface is considered to be immunosuppressed to allow development of the semi-allogeneic placental fetal unit. However, cytokine profiles of the decidua and different decidual cell types suggest that the in vivo situation might be more complex. Data suggest that decidual-derived cytokines not only play roles in immunosuppression, but also in other aspects of the establishment of pregnancy, including the regulation of trophoblast invasion and spiral artery remodelling. This review focuses on the potential role of decidua-derived cytokines in the aetiology of unexplained spontaneous miscarriage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Journal of Reproductive Immunology 02/2015; 108. DOI:10.1016/j.jri.2015.02.003 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.
    PLoS ONE 09/2014; 9(9):e106725. DOI:10.1371/journal.pone.0106725 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia inhibitory factor (LIF) plays important roles in cellular proliferation, growth promotion and differentiation of various types of target cells. In addition, LIF influences bone metabolism, cachexia, neural development, embryogenesis and inflammation. Human LIF (hLIF) is an essential growth factor for the maintenance of mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in a pluripotent, undifferentiated state. In this experimental study, we cloned hLIF into the pENTR-D/ TOPO entry vector by a TOPO reaction. Next, hLIF was subcloned into the pDEST17 destination vector by the LR reaction, which resulted in the production of a construct that was transferred into E. coli strain Rosetta-gami™ 2(DE3) pLacI competent cells to produce the His6-hLIF fusion protein. This straightforward method produced a biologically active recombinant hLIF protein in E. coli that has long-term storage ability. This procedure has provided rapid, cost effective purification of a soluble hLIF protein that is biologically active and functional as measured in mouse ESCs and iPSCs in vitro. Our results showed no significant differences in function between laboratory produced and commercialized hLIF.
    Cell Journal 07/2013; 15(2):190-7. · 0.46 Impact Factor