Photolytic and Radiolytic Oxidation of Humic Acid

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CCT La Plata-CONICET/UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
Photochemistry and Photobiology (Impact Factor: 2.27). 02/2012; 88(4):810-5. DOI: 10.1111/j.1751-1097.2012.01116.x
Source: PubMed


The reactions of Br(2)(˙-), Br˙, HO˙ and N(3)˙ with Aldrich humic acid (AHA) were investigated. The Br/Br(2)(˙-) radicals were obtained in flash-photolysis experiments (λ(exc) = 266 nm) performed with NaS(2)O(8) solutions in the presence of bromide ions. HO˙ and N(3)˙ radicals were generated by pulse radiolysis of N(2)O-saturated solutions. From the combination of a bilinear analysis and computer simulations of the absorbance traces, it was possible to obtain information on the rate constants for the reactions of Br(2)(˙-), Br˙, HO˙ and N(3)˙ with AHA and on the intermediate species involved in the mechanism. Evidence for the participation of phenoxyl radicals (λ(max) = 410 nm) is given.

Download full-text


Available from: Claudio D. Borsarelli, Jan 21, 2014
22 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transformation of dissolved organic matter (DOM) during ozonation results in a higher reduction in trihalomethane formation potential (THMFP) relative to dissolved organic carbon (DOC). This study was conducted to determine the effect of DOM transformation after ozonation on THM formation and to elucidate the difference in THMFP and DOC removal. Changes in DOC, THMFP, reactivities of the hydrophilic and hydrophobic DOC, and phenolic-OH were determined to explain the difference in THMFP and DOC removal after ozonation. Higher reduction in THMFP (24-46%) relative to DOC (10-16%) was obtained and was attributed to the following: transformation of DOM from a more reactive hydrophobic DOC (microg THM produced per mg organic carbon) to a less reactive hydrophilic DOC and to the decrease in the reactivities of both the hydrophobic and hydrophilic DOC after ozonation. The results also showed decrease in phenolic-OH indicating the oxidation of some reactive sites like resorcinol or meta-dihydroxy benzene ring structures, which are prone to chlorine substitution, consequently decreasing the reactivity of the organic carbon to form THM. These changes in DOM led to a significant decrease in THMFP with no remarkable removal in DOC.
    Water Research 07/2001; 35(9):2201-6. DOI:10.1016/S0043-1354(00)00489-9 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By monitoring the decay of SO4*- after flash photolysis of aqueous solutions of S2O82- at different pH values, the kinetics of the reaction of SO4*- radicals with gallic acid and the gallate ion was investigated. The bimolecular rate constants for the reactions of the sulfate radicals with gallic acid and the gallate ion were found to be (6.3 +/- 0.7) x 10(8) and (2.9 +/- 0.2) x 10(9) M(-1) s(-1), respectively. On the basis of the oxygen-independent second-order decay kinetics and on their absorption spectra, the organic radicals formed as intermediates of these reactions were assigned to the corresponding phenoxyl radicals. DFT calculations in the gas phase and aqueous solution support formation of the phenoxyl radicals by H abstraction from the phenols to the sulfate radical anion. The observed recombination of the phenoxyl radicals of gallic acid to yield substituted biphenyls and quinones is also supported by the calculations. HPLC/MS product analysis showed formation of one of the predicted quinones.
    The Journal of Physical Chemistry A 03/2008; 112(6):1188-94. DOI:10.1021/jp075464z · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The degradation of three endocrine disrupting chemicals (EDCs), bisphenol A, ethinyl estradiol, and estradiol, was investigated via ultraviolet (UV) radiation photolysis and the UV/hydrogen peroxide advanced oxidation process (AOP). These EDCs have been detected at low levels in wastewaters and surface waters in both the United States and European countries, can cause adverse effects on humans and wildlife via interactions with the endocrine system, and thus must be treated before entering the public drinking water supply. Because many EDCs can only be partially removed with conventional water treatment systems, there is a need to evaluate alternative treatment processes. For each EDC tested, direct UV photolysis quantum yields were derived for use with both monochromatic low-pressure (LP) UV lamps and polychromatic medium-pressure (MP) UV lamps and second-order hydroxyl radical rate constants were developed. These parameters were utilized to successfully model UV treatment of the EDCs in laboratory and natural waters. The polychromatic MP UV radiation source was more effective for direct photolysis degradation as compared to conventional LP UV lamps emitting monochromatic UV 254 nm radiation. However, in all cases the EDCs were more effectively degraded utilizing UV/H2O2 advanced oxidation as compared to direct UV photolysis treatment.
    Environmental Science and Technology 11/2004; 38(20):5476-83. DOI:10.1021/es035413p · 5.33 Impact Factor
Show more