Article

Cellular plasticity: the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy.

Cardiovascular Regenerative Medicine Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, the Netherlands.
Canadian Journal of Physiology and Pharmacology (Impact Factor: 1.56). 02/2012; 90(3):275-85. DOI: 10.1139/y11-107
Source: PubMed

ABSTRACT Progenitor cell based therapies have emerged for the treatment of ischemic cardiovascular diseases where there is insufficient endogenous repair. However, clinical success has been limited, which challenges the original premise that transplanted progenitor cells would orchestrate repair. In this review, we discuss the basics of endothelial progenitor cell therapy and describe how microenvironmental changes (i.e., trophic and mechano-structural factors) in the damaged myocardium influence progenitor cell plasticity and hamper beneficial therapeutic outcome. Further understanding of these microenvironmental clues will enable optimization of cell therapy at all levels. We discuss current concepts and provide future perspectives for the enhancement of progenitor cell therapy, and merge these advances into a combined approach for ischemic tissue repair.

1 Bookmark
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental clinical stem cell therapy has been used for more than a decade to alleviate the adverse aftermath of acute myocardial infarction (aMI). The post-infarcted myocardial microenvironment is characterized by cardiomyocyte death, caused by ischemia and inflammation. These conditions may negatively affect administered stem cells. As postnatal cardiomyocytes have a poor proliferation rate, while induction of proliferation seems even more rare. Thus stimulation of their proliferation rate is essential after aMI. In metaplastic disease, the pro-inflammatory cytokine interleukin-6 (IL-6) has been identified as potent mediators of the proliferation rate. We hypothesized that IL-6 could augment the proliferation rate of (slow-)dividing cardiomyocytes. To mimic the behavior of therapeutic cells in the post-infarct cardiac microenvironment, human Adipose Derived Stromal Cells (ADSC) were cultured under hypoxic (2% O2) and pro-inflammatory conditions (IL-1β) for 24h. Serum-free conditioned medium from ADSC primed with hypoxia and/or IL-1β was added to rat neonatal cardiomyocytes and adult cardiomyocytes (HL-1) to assess paracrine-driven changes in cardiomyocyte proliferation rate and induction of myogenic signaling pathways. We demonstrate that ADSC enhance the proliferation rate of rat neonatal cardiomyocytes and adult HL-1 cardiomyocytes in a paracrine fashion. ADSC under hypoxia and inflammation in vitro had increased the interleukin-6 (IL-6) gene and protein expression. Similar to conditioned medium of ADSC, treatment of rat neonatal cardiomyocytes and HL-1 with recombinant IL-6 alone also stimulated their proliferation rate. This was corroborated by a strong decrease of cardiomyocyte proliferation after addition of IL-6 neutralizing antibody to conditioned medium of ADSC. The stimulatory effect of ADSC conditioned media or IL-6 was accomplished through activation of both Janus Kinase-Signal Transducer and Activator of Transcription (JAK/STAT) and Mitogen-Activated Protein (MAP) kinases (MAPK) mitogenic signaling pathways. ADSC are promising therapeutic cells for cardiac stem cell therapy. The inflammatory and hypoxic host post-MI microenvironment enhances the regenerative potential of ADSC to promote the proliferation rate of cardiomyocytes. This was achieved in paracrine manner, which warrants the development of ADSC conditioned medium as an "of-the-shelf" product for treatment of post-myocardial infarction complications.
    Journal of Translational Medicine 01/2013; 11:39. · 3.46 Impact Factor

Full-text

View
68 Downloads
Available from
Jun 1, 2014