Article

Phenylnaphthalenes: sublimation equilibrium, conjugation, and aromatic interactions.

Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, P-4169-007 Porto, Portugal.
The Journal of Physical Chemistry B (Impact Factor: 3.61). 02/2012; 116(11):3557-70. DOI: 10.1021/jp2111378
Source: PubMed

ABSTRACT In this work, the interplay between structure and energetics in some representative phenylnaphthalenes is discussed from an experimental and theoretical perspective. For the compounds studied, the standard molar enthalpies, entropies and Gibbs energies of sublimation, at T = 298.15 K, were determined by the measurement of the vapor pressures as a function of T, using a Knudsen/quartz crystal effusion apparatus. The standard molar enthalpies of formation in the crystalline state were determined by static bomb combustion calorimetry. From these results, the standard molar enthalpies of formation in the gaseous phase were derived and, altogether with computational chemistry at the B3LYP/6-311++G(d,p) and MP2/cc-pVDZ levels of theory, used to deduce the relative molecular stabilities in various phenylnaphthalenes. X-ray crystallographic structures were obtained for some selected compounds in order to provide structural insights, and relate them to energetics. The thermodynamic quantities for sublimation suggest that molecular symmetry and torsional freedom are major factors affecting entropic differentiation in these molecules, and that cohesive forces are significantly influenced by molecular surface area. The global results obtained support the lack of significant conjugation between aromatic moieties in the α position of naphthalene but indicate the existence of significant electron delocalization when the aromatic groups are in the β position. Evidence for the existence of a quasi T-shaped intramolecular aromatic interaction between the two outer phenyl rings in 1,8-di([1,1'-biphenyl]-4-yl)naphthalene was found, and the enthalpy of this interaction quantified on pure experimental grounds as -(11.9 ± 4.8) kJ·mol(-1), in excellent agreement with the literature CCSD(T) theoretical results for the benzene dimer.

0 Bookmarks
 · 
199 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein a core scaffold of 1-phenylnaphthalenes and 1,8-diphenylnaphthalenes with different substituents on the phenyl rings was used to study substituent effects on parallel-displaced aromatic π⋅⋅⋅π interactions. The energetics of the interaction was evaluated in gas phase based on the standard molar enthalpies of formation, at T=298.15 K, for the compounds studied; these values were derived from the combination of the results obtained by combustion calorimetry and Knudsen/Quartz crystal effusion. A homodesmotic gas-phase reaction scheme was used to quantify and compare the intramolecular interaction enthalpies in various substituted 1,8-diphenylnaphthalenes. The application of this methodology allowed a direct evaluation of aromatic interactions, and showed that substituent effects on the interaction enthalpy cannot be rationalized solely on classical electrostatic grounds, because no correlation with the σ(meta) or σ(para) Hammett constants was observed. Moreover, the results obtained indicate that aromatic π⋅⋅⋅π interactions are significantly enhanced by substitution, in a way that correlates with the ability of the interacting aryl rings to establish dispersive interactions. A combined experimental and computational approach for calculation of the true aromatic π⋅⋅⋅π interaction energies in these systems, free of secondary effects, was employed, and corroborates the rationale derived from the experimental results. These findings clearly emphasize the role of dispersion and dilute the importance of electrostatic forces on this type of interactions.
    Chemistry 06/2012; 18(29):8934-43. · 5.93 Impact Factor

Full-text

View
222 Downloads
Available from
Jun 1, 2014