Article

Metabolic and Hormonal Changes After Laparoscopic Roux-en-Y Gastric Bypass and Sleeve Gastrectomy: a Randomized, Prospective Trial

Department of Surgery, St Claraspital, 4016 Basel, Switzerland.
Obesity Surgery (Impact Factor: 3.74). 02/2012; 22(5):740-8. DOI: 10.1007/s11695-012-0622-3
Source: PubMed

ABSTRACT The mechanisms of amelioration of glycemic control early after laparoscopic Roux-en-Y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG) are not fully understood.
In this prospective, randomized 1-year trial, outcomes of LRYGB and LSG patients were compared, focusing on possibly responsible mechanisms. Twelve patients were randomized to LRYGB and 11 to LSG. These non-diabetic patients were investigated before and 1 week, 3 months, and 12 months after surgery. A standard test meal was given after an overnight fast, and blood samples were collected before, during, and after food intake for hormone profiles (cholecystokinin (CCK), ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY)).
In both groups, body weight and BMI decreased markedly and comparably leading to an identical improvement of abnormal glycemic control (HOMA index). Post-surgery, patients had markedly increased postprandial plasma GLP-1 and PYY levels (p < 0.05) with ensuing improvement in glucose homeostasis. At 12 months, LRYGB ghrelin levels approached preoperative values. The postprandial, physiologic fluctuation returned, however, while LSG ghrelin levels were still markedly attenuated. One year postoperatively, CCK concentrations after test meals increased less in the LRYGB group than they did in the LSG group, with the latter showing significantly higher maximal CCK concentrations (p < 0.012 vs. LRYGB).
Bypassing the foregut is not the only mechanism responsible for improved glucose homeostasis. The balance between foregut (ghrelin, CCK) and hindgut (GLP-1, PYY) hormones is a key to understanding the underlying mechanisms.

Full-text

Available from: Beatrice Kern, Jan 11, 2014
2 Followers
 · 
347 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is nowadays a public health problem both in the industrialized world and developing countries. The different treatments to fight against obesity are not very successful with the exception of gastric surgery. The mechanism behind the achievement of this procedure remains unclear although the modifications in the pattern of gastrointestinal hormones production appear to be responsible for the beneficial effect. The gastrointestinal tract has emerged in the last time as an endocrine organ in charge of response to the different stimulus related to nutritional status by the modulation of more than 30 signals acting at central level to modulate food intake and body weight. The production of some of these gastric derived signals has been proved to be altered in obesity (ghrelin, CCK, and GLP-1). In fact, bariatric surgery modifies the production of both gastrointestinal and adipose tissue peripheral signals beyond the gut microbiota composition. Through this paper the main peripheral signals altered in obesity will be reviewed together with their modifications after bariatric surgery.
    Gastroenterology Research and Practice 01/2015; 2015:1-12. DOI:10.1155/2015/560938 · 1.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a public health epidemic in the United States that results in significant morbidity, mortality, and cost to the health care system. Despite advancements in therapeutic options for patients receiving bariatric procedures, the number of overweight and obese individuals continues to increase. Therefore, complementary or alternative treatments to lifestyle changes and surgery are urgently needed. Embolization of the left gastric artery, or bariatric arterial embolization (BAE), has been shown to modulate body weight in animal models and early clinical studies. If successful, BAE represents a potential minimally invasive approach offered by interventional radiologists to treat obesity. The purpose of the present review is to introduce the interventional radiologist to BAE by presenting its physiologic and anatomic bases, reviewing the preclinical and clinical data, and discussing current and future investigations. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.
    Journal of vascular and interventional radiology: JVIR 03/2015; 26(5). DOI:10.1016/j.jvir.2015.01.017 · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Body weight is determined via both metabolic and hedonic mechanisms. Metabolic regulation of body weight centres around the 'body weight set point', which is programmed by energy balance circuitry in the hypothalamus and other specific brain regions. The metabolic body weight set point has a genetic basis, but exposure to an obesogenic environment may elicit allostatic responses and upward drift of the set point, leading to a higher maintained body weight. However, an elevated steady-state body weight may also be achieved without an alteration of the metabolic set point, via sustained hedonic over-eating, which is governed by the reward system of the brain and can override homeostatic metabolic signals. While hedonic signals are potent influences in determining food intake, metabolic regulation involves the active control of both food intake and energy expenditure. When overweight is due to elevation of the metabolic set point ('metabolic obesity'), energy expenditure theoretically falls onto the standard energy-mass regression line. In contrast, when a steady-state weight is above the metabolic set point due to hedonic over-eating ('hedonic obesity'), a persistent compensatory increase in energy expenditure per unit metabolic mass may be demonstrable. Recognition of the two types of obesity may lead to more effective treatment and prevention of obesity. © 2015 World Obesity.
    Obesity Reviews 01/2015; 16(3). DOI:10.1111/obr.12246 · 7.86 Impact Factor