Article

Correlation of Amyloid PET Ligand Florbetapir F 18 Binding With A beta Aggregation and Neuritic Plaque Deposition in Postmortem Brain Tissue

Avid Radiopharmaceutical Inc., 3711 Market Street, 7th Floor, Philadelphia, PA 19104, USA.
Alzheimer disease and associated disorders (Impact Factor: 2.69). 01/2012; 26(1):8-16. DOI: 10.1097/WAD.0b013e31821300bc
Source: PubMed

ABSTRACT Florbetapir F 18 (F-AV-45) is a positron emission tomography imaging ligand for the detection of amyloid aggregation associated with Alzheimer disease. Earlier data showed that florbetapir F 18 binds with high affinity to β-amyloid (Aβ) plaques in human brain homogenates (Kd=3.7 nM) and has favorable imaging pharmacokinetic properties, including rapid brain penetration and washout. This study used human autopsy brain tissue to evaluate the correlation between in vitro florbetapir F 18 binding and Aβ density measured by established neuropathologic methods.
The localization and density of florbetapir F 18 binding in frozen and formalin-fixed paraffin-embedded sections of postmortem brain tissue from 40 patients with a varying degree of neurodegenerative pathology was assessed by standard florbetapir F 18 autoradiography and correlated with the localization and density of Aβ identified by silver staining, thioflavin S staining, and immunohistochemistry.
There were strong quantitative correlations between florbetapir F 18 tissue binding and both Aβ plaques identified by light microscopy (Silver staining and thioflavin S fluorescence) and by immunohistochemical measurements of Aβ using 3 antibodies recognizing different epitopes of the Aβ peptide. Florbetapir F 18 did not bind to neurofibrillary tangles.
Florbetapir F 18 selectively binds Aβ in human brain tissue. The binding intensity was quantitatively correlated with the density of Aβ plaques identified by standard neuropathologic techniques and correlated with the density of Aβ measured by immunohistochemistry. As Aβ plaques are a defining neuropathologic feature for Alzheimer disease, these results support the use of florbetapir F 18 as an amyloid positron emission tomography ligand to identify the presence of Alzheimer disease pathology in patients with signs and symptoms of progressive late-life cognitive impairment.

1 Follower
 · 
272 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence indicates that blood-brain barrier (BBB) impairment may play a role in the pathophysiology of cognitive decline and dementia. In vivo imaging studies are needed to quantify and localize the BBB defects during life, contemplating the circulatory properties. We reviewed the literature for imaging studies investigating BBB impairment in patients suffering from dementia. After selection, 11 imaging studies were included, of which 6 used contrast-enhanced magnetic resonance imaging (MRI), 2 used contrast-enhanced computed tomography (CT), and 3 positron emission tomography (PET). Primarily the MRI studies hint at a subtle increasing permeability of the BBB, particularly in patients already exhibiting cerebrovascular pathology. More elaborate studies are required to provide convincing evidence on BBB impairment in patients with various stages of dementia with and without obvious cerebrovascular pathology. In the future, dynamic contrast enhanced MRI techniques and transport specific imaging using PET may further detail the research on the molecular nature of BBB defects. Copyright © 2014. Published by Elsevier Ltd.
    Neuroscience & Biobehavioral Reviews 02/2015; 49:71-81. DOI:10.1016/j.neubiorev.2014.11.022 · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Therapies targeting amyloid-β peptide currently represent approximately 50% of drugs now being developed for Alzheimer's disease. Some, including active and passive anti-Aβ immunotherapy, directly target the amyloid plaques. The new amyloid tracers are increasingly being included in the proposed updated diagnostic criteria, and may allow earlier diagnosis. Those targeting amyloid-β peptide allow identification of amyloid plaques in vivo. We need to gain insight into all aspects of their application. As florbetapir (Amyvid™) and flutemetamol (Vizamyl™) have received marketing authorization, clinicians require deeper knowledge to be rationally used in diagnosis. In this paper, we review both completed and ongoing observational, longitudinal and interventional studies of these tracers, our main objective being to show the performance of the four most commonly used tracers and their validation.
    The Journal of Nutrition Health and Aging 08/2014; 18(7):723-740. DOI:10.1007/s12603-014-0485-5 · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Demonstration of brain accumulation of fibrillar amyloid beta protein via positron emission tomography (PET) with amyloid specific ligands may support the diagnosis of Alzheimer's disease (AD). There is increasing recognition of the potential use of amyloid imaging to detect in vivo the pathology of AD in individuals with no ostensible cognitive impairment. Research use of amyloid PET in cognitively normal patients will be key to pursuit of therapies able to delay cognitive impairment and dementia due to AD. We review the pros and cons of disclosing amyloid imaging results to cognitively normal individuals in clinical and research settings and provide draft recommendations.
    02/2013; 3(1):43-51. DOI:10.2217/nmt.12.75

Full-text (2 Sources)

Download
4 Downloads
Available from
Mar 11, 2015