Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway.

Department of Plant Production and Forestry Science, ETSEA, University of Lleida, Lleida, Spain.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2012; 847:419-35. DOI: 10.1007/978-1-61779-558-9_33
Source: PubMed

ABSTRACT Combinatorial nuclear transformation is used to generate populations of transgenic plants containing random selections from a collection of input transgenes. This is a useful approach because it provides the means to test different combinations of genes without the need for separate transformation experiments, allowing the comprehensive analysis of metabolic pathways and other genetic systems requiring the coordinated expression of multiple genes. The principle of combinatorial nuclear transformation is demonstrated in this chapter through protocols developed in our laboratory that allow combinations of genes encoding enzymes in the carotenoid biosynthesis pathway to be introduced into rice and a white-endosperm variety of corn. These allow the accumulation of carotenoids to be screened initially by the colour of the endosperm, which ranges from white through various shades of yellow and orange depending on the types and quantities of carotenoids present. The protocols cover the preparation of DNA-coated metal particles, the transformation of corn and rice plants by particle bombardment, the regeneration of transgenic plants, the extraction of carotenoids from plant tissues, and their analysis by high-performance liquid chromatography.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice endosperm is devoid of carotenoids because the initial biosynthetic steps are absent. The early carotenogenesis reactions were constituted through co-transformation of endosperm-derived rice callus with phytoene synthase and phytoene desaturase transgenes. Subsequent steps in the pathway such as cyclization and hydroxylation reactions were catalyzed by endogenous rice enzymes in the endosperm. The carotenoid pathway was extended further by including a bacterial ketolase gene able to form astaxanthin, a high value carotenoid which is not a typical plant carotenoid. In addition to astaxanthin and precursors, a carotenoid accumulated in the transgenic callus which did not fit into the pathway to astaxanthin. This was subsequently identified as 4-keto-α-carotene by HPLC co-chromatography, chemical modification, mass spectrometry and the reconstruction of its biosynthesis pathway in Escherichia coli. We postulate that this keto carotenoid is formed from α-carotene which accumulates by combined reactions of the heterologous gene products and endogenous rice endosperm cyclization reactions.
    Phytochemistry 01/2014; · 3.05 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant Synthetic Biology aims to apply engineering principles to plant genetic design. One strategic requirement of Plant Synthetic Biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here we describe GoldenBraid2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for Plant Synthetic Biology. GB2.0 relies on the use of TypeIIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally-tested, pre-made genetic modules to build frequently-used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of web resources which include a publicly available database, tutorials and a software package that provides in silico simulations and lab protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement Plant Synthetic Biology projects.
    Plant physiology 05/2013; · 6.56 Impact Factor


Available from
May 26, 2014