Article

Dermatan Sulfate Is Involved in the Tumorigenic Properties of Esophagus Squamous Cell Carcinoma

Department of Experimental Medical Science, Biomedical Center D12, Lund University, Lund, Sweden.
Cancer Research (Impact Factor: 9.28). 02/2012; 72(8):1943-52. DOI: 10.1158/0008-5472.CAN-11-1351
Source: PubMed

ABSTRACT Extracellular matrix, either produced by cancer cells or by cancer-associated fibroblasts, influences angiogenesis, invasion, and metastasis. Chondroitin/dermatan sulfate (CS/DS) proteoglycans, which occur both in the matrix and at the cell surface, play important roles in these processes. The unique feature that distinguishes DS from CS is the presence of iduronic acid (IdoA) in DS. Here, we report that CS/DS is increased five-fold in human biopsies of esophagus squamous cell carcinoma (ESCC), an aggressive tumor with poor prognosis, as compared with normal tissue. The main IdoA-producing enzyme, DS epimerase 1 (DS-epi1), together with the 6-O- and 4-O-sulfotransferases, were highly upregulated in ESCC biopsies. Importantly, CS/DS structure in patient tumors was significantly altered compared with normal tissue, as determined by sensitive mass spectrometry. To further understand the roles of IdoA in tumor development, DS-epi1 expression, and consequently IdoA content, was downregulated in ESCC cells. IdoA-deficient cells exhibited decreased migration and invasion capabilities in vitro, which was associated with reduced cellular binding of hepatocyte growth factor, inhibition of pERK-1/2 signaling, and deregulated actin cytoskeleton dynamics and focal adhesion formation. Our findings show that IdoA in DS influences tumorigenesis by affecting cancer cell behavior. Therefore, downregulation of IdoA by DS-epi1 inhibitors may represent a new anticancer therapy.

Download full-text

Full-text

Available from: Martin Thelin, Aug 10, 2015
0 Followers
 · 
196 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heparan sulfate (HS) glycosaminoglycans (GAGs) regulate a host of biological functions. To better understand their biological roles, it is necessary to gain understanding about the structure of HS, which requires identification of the sulfation pattern as well as the uronic acid epimerization. In order to model HS structure, it is necessary to quantitatively profile depolymerization products. To date, liquid chromatography-mass spectrometry (LC-MS) methods for profiling heparin lyase decomposition products have been shown. These enzymes, however, destroy information about uronic acid epimerization. Deaminative cleavage using nitrous acid (HONO) is a classic method for GAG depolymerization that retains uronic acid epimerization. Several chromatographic methods have been used for analysis of deaminative cleavage products. The chromatographic methods have the disadvantage that there is no direct readout on the structures producing the observed peaks. This report demonstrates a porous graphitized carbon (PGC)-MS method for the quantification of HONO generated disaccharides to obtain information about the sulfation pattern and uronic acid epimerization. Here, we demonstrate the separation and identification of uronic acid epimers as well as geometric sulfation isomers. The results are comparable to those expected for benchmark HS and heparin samples. The data demonstrate the utility of PGC-MS for quantification of HS nitrous acid depolymerization products for structural analysis of HS and heparin.
    Analytical Chemistry 08/2012; 84(17):7539-46. DOI:10.1021/ac3016054 · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distribution reflects the variety of biological roles in which they are involved, from extracellular matrix organization to regulation of processes such as proliferation, migration, adhesion, and differentiation. They play roles in inflammation, angiogenesis, coagulation, immunity, and wound healing. Such versatility is achieved thanks to their variable composition, both in terms of protein core and the fine structure of the CS/DS chains. Excellent reviews have been published on the collective and individual functions of each CS/DS-PG. This short review presents the biosynthesis and functions of iduronic acid-containing structures, also as revealed by the analysis of the DS-epi1- and 2-deficient mouse models.
    Journal of Histochemistry and Cytochemistry 08/2012; 60(12). DOI:10.1369/0022155412459857 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) participate in many important biological processes. Quantitative disaccharide analysis of HS and CS/DS is essential for the characterization of GAGs and enables modeling of the GAG domain structure. Methods involving enzymatic digestion and chemical depolymerization have been developed to determine the type and location of sulfation/acetylation modifications as well as uronic acid epimerization. Enzymatic digestion generates disaccharides with Δ-4,5-unsaturation at the non-reducing end. Chemical depolymerization with nitrous acid retains the uronic acid epimerization. This work shows the use of hydrophilic interaction liquid chromatography (HILIC)-MS for quantification of both enzyme-derived and nitrous acid depolymerization products for structural analysis of HS and CS/DS. This method enables biomedical researchers to determine complete disaccharide profiles on GAG samples using a single LC-MS platform.
    Analytical Chemistry 12/2012; 85(2). DOI:10.1021/ac3030448 · 5.83 Impact Factor
Show more