Article

Assessment of dual-energy X-ray absorptiometry measures of bone health in pediatric chronic kidney disease.

Department of Pediatrics, Children's Hospital of Philadelphia, 3535 Market Street, Room 1564, Philadelphia, PA 19104, USA.
Pediatric Nephrology (Impact Factor: 2.88). 02/2012; 27(7):1139-48. DOI: 10.1007/s00467-012-2116-x
Source: PubMed

ABSTRACT Dual-energy X-ray absorptiometry (DXA) techniques are limited in childhood chronic kidney disease (CKD) by the confounding effect of short stature and opposing parathyroid hormone effects on trabecular and cortical bone. Peripheral quantitative computed tomography (pQCT) is not subject to these limitations.
Lumbar spine (LS) and whole-body (WB) DXA and tibia pQCT scans were obtained in 88 stage 4-5 CKD and >650 healthy participants, ages 5-21 years. Sex- and race-specific Z-scores were generated for bone mineral density (BMD) and bone mineral content (BMC) by DXA, relative to age and adjusted for height Z-score (LS-BMD-Z and WB-BMC-Z), and compared to pQCT Z-scores for trabecular BMD (TrabBMD-Z) for age and cortical BMC (CortBMC-Z) for age and tibia length.
LS-BMD-Z [0.50 (95% C.I. 0.28, 0.73), p<0.0001] and TrabBMD-Z [0.53 (0.27, 0.79), p<0.0001] were greater in CKD, and WB-BMC-Z [-0.36 (-0.53, -0.19), p<0.0001] and CortBMC-Z [-0.48 (-0.70, -0.27), p<0.0001] were lower, compared to reference participants. Z-scores were correlated at trabecular (LS-BMD-Z and TrabBMD-Z: R=0.36) and cortical (WB-BMC-Z and CortBMC-Z: R=0.64) sites in CKD; similar to correlations in reference participants.
Lumbar spine and whole-body DXA suggested greater trabecular BMD and lower cortical BMC in CKD, consistent with pQCT results; however, correlations were modest. Studies are needed to identify methods that predict fracture in childhood CKD.

0 Followers
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this Task Force was to review the use of dual-energy X-ray absorptiometry (DXA) in children and adolescents with underlying chronic diseases that pose risk factors for compromised bone health, such as inflammation, glucocorticoid therapy, or decreased mobility. The Task Force systematically analyzed more than 270 studies, with an emphasis on those published in the interval since the original 2007 Position Statements. Important developments over this period included prospective cohort studies demonstrating that DXA measures of areal bone mineral density (aBMD) predicted incident fractures and the development of robust reference data and strategies to adjust for bone size in children with growth impairment. In this report, we summarize the current literature on the relationship between DXA-based aBMD and both fracture (vertebral and non-vertebral) outcomes and non-fracture risk factors (e.g., disease characteristics, ambulatory status, and glucocorticoid exposure) in children with chronic illnesses. Most publications described the aBMD profile of children with underlying diseases, as well as the cross-sectional or longitudinal relationship between aBMD and clinically relevant non-fracture outcomes. Studies that addressed the relationship between aBMD and prevalent or incident fractures in children with chronic illnesses are now emerging. In view of these updated data, this report provides guidelines for the use of DXA-based aBMD in this setting. The initial recommendation that DXA is part of a comprehensive skeletal healthy assessment in patients with increased risk of fracture is unchanged. Although the prior guidelines recommended DXA assessment in children with chronic diseases at the time of clinical presentation with ongoing monitoring, this revised Position Statement focuses on the performance of DXA when the patient may benefit from interventions to decrease their elevated risk of a clinically significant fracture and when the DXA results will influence that management.
    Journal of Clinical Densitometry 04/2014; 17(2). DOI:10.1016/j.jocd.2014.01.005 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethnic-specific normative data of bone mineral density (BMD) is essential for the accurate interpretation of BMD measurement. There have been previous reports of normative BMD data for Caucasian and Asian children including Japanese, Chinese, Korean and Indian. However, the normative BMD data for Southeast Asian including Thai children and adolescents are not currently available. The goals of our study were 1) to establish normative data of BMD, bone mineral content (BMC), bone area (BA) and lean body mass (LBM) for healthy Thai children and adolescents; aged 5-18 years measured by dual energy X-ray absorptiometry (DXA, Lunar Prodigy) and 2) to evaluate the relationships between BMD vs. age, sex, puberty, weight, height, calcium intake and the age of menarche in our population. Gender and age-specific BMD (L2-4; LS and total body; TB), BMADLS (apparent BMD of the lumbar spine), BMC (L2-4 and total body), BA (L2-4 and total body) and LBM were evaluated in 367 children (174 boys and 193 girls). All parameters increased progressively with age. A rapid increase in BMD, BMC and BMADLS was observed at earlier ages in girls. Gender and Tanner stage-specific BMD normative data were also generated. The dynamic changes of BMD values from childhood to early and late puberty of Thai children appeared to be consistent with those of Caucasian and Asian populations. Using a multiple-regression, weight and Tanner stage significantly affected BMDLS, BMDTB and BMADLS in both genders. Only in girls, height was found to have significant influence on BMDTB and BMADLS. The positive correlation between BMD and several demographic parameters, except the calcium intake, was observed. In summary, we established a normal BMD reference for Thai children and adolescents and this will be of useful for clinicians and researchers to appropriately assess BMD in Thais and other Southeast Asian children.
    PLoS ONE 05/2014; 9(5):e97218. DOI:10.1371/journal.pone.0097218 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2007, International Society of Clinical Densitometry Pediatric Positions Task Forces reviewed the evidence for the clinical application of peripheral quantitative computed tomography (pQCT) in children and adolescents. At that time, numerous limitations regarding the clinical application of pQCT were identified, although its use as a research modality for investigation of bone strength was highlighted. The present report provides an updated review of evidence for the clinical application of pQCT, as well as additional reviews of whole body QCT scans of the central and peripheral skeletons, and high-resolution pQCT in children. Although these techniques remain in the domain of research, this report summarizes the recent literature and evidence of the clinical applicability and offers general recommendations regarding the use of these modalities in pediatric bone health assessment.
    Journal of Clinical Densitometry 04/2014; 17(2):258-274. DOI:10.1016/j.jocd.2014.01.006 · 1.60 Impact Factor