Article

Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia.

Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Molecular psychiatry (Impact Factor: 15.05). 02/2012; DOI: 10.1038/mp.2012.6
Source: PubMed
0 Bookmarks
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress has become an exciting area of schizophrenia research, and provides ample opportunities and hope for a better understanding of its pathophysiology, which may lead to novel treatment strategies. This review describes how recent methodological advances have allowed the study of oxidative stress to tackle fundamental questions and have provided several conceptual breakthroughs to the field. Recent human studies support the notion that intrinsic susceptibility to oxidative stress may underlie the pathophysiology of schizophrenia. More than one animal model that may be relevant to study the biology of schizophrenia also shows sign of oxidative stress in the brain. These advances have made this topic of paramount importance to the understanding of schizophrenia and will play a role in advancing the treatment options. This review covers topics from the classic biochemical studies of human biospecimens to the use of magnetic resonance spectroscopy and novel mouse models, and focuses on highlighting the promising areas of research.
    Current opinion in psychiatry 03/2014; · 3.57 Impact Factor
  • Schizophrenia Bulletin 04/2014; · 8.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia (SZ) is a devastating mental condition with onset in young adulthood. The identification of molecular biomarkers that reflect illness pathology is crucial. Recent evidence suggested immune and inflammatory cascades in conjunction with infection may play a role in the pathology. To address this question, we investigated molecular changes in cerebrospinal fluid (CSF) from antipsychotic-naïve patients with SZ and at risk mental status for psychosis (ARMS), in comparison with healthy controls (HCs). We measured 90 analytes using a broad multiplex platform focusing on immune and inflammatory cascades then selected 35 with our quality reporting criteria for further analysis. We also examined Toxoplasma gondii (TG) and herpes simplex virus 1 antibody levels in CSF. We report that expression of 15 molecules was significantly altered in the patient groups (SZ and ARMS) compared with HCs. The majority of these molecular changes (alpha-2-macroglobulin [α2M], fibrinogen, interleukin-6 receptor [IL-6R], stem cell factor [SCF], transforming growth factor alpha [TGFα], tumor necrosis factor receptor 2 [TNFR2], IL-8, monocyte chemotactic protein 2 [MCP-2/CCL8], testosterone [for males], angiotensin converting enzyme [ACE], and epidermal growth factor receptor) were consistent between SZ and ARMS patients, suggesting these may represent trait changes associated with psychotic conditions in general. Interestingly, many of these analytes (α2M, fibrinogen, IL-6R, SCF, TGFα, TNFR2, IL-8, MCP-2/CCL8, and testosterone [for males]) were exacerbated in subjects with ARMS compared with subjects with SZ. Although further studies are needed, we optimistically propose that these molecules may be good candidates for predictive markers for psychosis from an early stage. Lastly, reduction of IL-6R, TGFα, and ACE was correlated with positivity of TG antibody in the CSF, suggesting possible involvement of TG infection in the pathology.
    Schizophrenia Bulletin 04/2014; · 8.80 Impact Factor