Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia

Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Molecular Psychiatry (Impact Factor: 14.5). 02/2012; 18(1). DOI: 10.1038/mp.2012.6
Source: PubMed


Molecular Psychiatry publishes work aimed at elucidating biological mechanisms underlying psychiatric disorders and their treatment

9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Our previous studies indicated that N-methyl-D-aspartate receptor (NMDAR) deletion from a subset of corticolimbic interneurons in the mouse brain during early postnatal development is sufficient to trigger several behavioral and pathophysiological features resembling the symptoms of human schizophrenia. Interestingly, many of these behavioral phenotypes are exacerbated by social isolation stress. However, the mechanisms underlying the exacerbating effects of social isolation are unclear. Methods: With γ-aminobutyric acid-ergic interneuron-specific NMDAR hypofunction mouse model (Ppp1r2-Cre/fGluN1 knockout [KO] mice), we investigated whether oxidative stress is implicated in the social isolation-induced exacerbation of schizophrenia-like phenotypes and further explored the underlying mechanism of elevated oxidative stress in KO mice. Results: The reactive oxygen species (ROS) level in the cortex of group-housed KO mice was normal at 8 weeks although increased at 16 weeks old. Postweaning social isolation (PWSI) augmented the ROS levels in KO mice at both ages, which was accompanied by the onset of behavioral phenotype. Chronic treatment with apocynin, an ROS scavenger, abolished markers of oxidative stress and partially alleviated schizophrenia-like behavioral phenotypes in KO mice. Markers of oxidative stress after PWSI were especially prominent in cortical parvalbumin (PV)-positive interneurons. The vulnerability of PV interneurons to oxidative stress was associated with downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial energy metabolism and antioxidation. Conclusions: These results suggest that a PWSI-mediated impairment in antioxidant defense mechanisms, presumably mediated by PGC-1α downregulation in the NMDAR-deleted PV-positive interneurons, results in oxidative stress, which, in turn, might contribute to exacerbation of schizophrenia-like behavioral phenotypes.
    Biological psychiatry 01/2013; 73(10). DOI:10.1016/j.biopsych.2012.12.004 · 10.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple lines of evidence support the pathogenic role of neuroinflammation in psychiatric illness. While systemic autoimmune diseases are well-documented causes of neuropsychiatric disorders, synaptic autoimmune encephalitides with psychotic symptoms often go under-recognized. Parallel to the link between psychiatric symptoms and autoimmunity in autoimmune diseases, neuroimmunological abnormalities occur in classical psychiatric disorders (for example, major depressive, bipolar, schizophrenia, and obsessive-compulsive disorders). The pathophysiology of these conditions traditionally stressed dysregulation of the glutamatergic and monoaminergic systems, but the mechanisms causing these neurotransmitter abnormalities remained elusive. We review autoimmunity and neuropsychiatric disorders, and the human and experimental evidence supporting the pathogenic role of neuroinflammation in selected classical psychiatric disorders. Understanding how psychosocial, genetic, immunological and neurotransmitter systems interact can reveal pathogenic clues and help target new preventive and symptomatic therapies.
    Journal of Neuroinflammation 04/2013; 10(1):43. DOI:10.1186/1742-2094-10-43 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence suggests the involvement of inflammatory processes in the pathophysiology of schizophrenia. Four to eight-week exposure to cuprizone, a copper chelator, causes robust demyelination and has been used to build a model for multiple sclerosis. In contrast, we report here the effects of one-week cuprizone exposure in mice. This short-term cuprizone exposure elicits behavioral changes that include augmented responsiveness to methamphetamine and phencyclidine, as well as impaired working memory. The cellular effects of one-week cuprizone exposure differ substantially from the longer-term exposure; perturbation of astrocytes and microglia is induced without any sign of demyelination. Furthermore, the proinflammatory cytokine interleukin-6 was significantly up-regulated in glial fibrillary acidic protein (GFAP)-positive cells. We propose that this cuprizone short-term exposure may offer a model to study some aspects of biology relevant to schizophrenia and related conditions.
    Neurobiology of Disease 07/2013; 59. DOI:10.1016/j.nbd.2013.07.003 · 5.08 Impact Factor
Show more