Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis.

Department of Clinical Sciences, Malmo, Section of Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
Agents and Actions (Impact Factor: 1.59). 02/2012; 61(6):571-9. DOI: 10.1007/s00011-012-0446-6
Source: PubMed

ABSTRACT Platelets promote sepsis-induced activation of neutrophils via secretion of CD40L. However, the mechanism regulating the release of platelet-derived CD40L is not known. We hypothesized that matrix metalloproteinases (MMPs) might regulate shedding of platelet-expressed CD40L and neutrophil activation in sepsis.
Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were pretreated with a broad-range MMP inhibitor, GM6001, prior to CLP induction. Edema formation, CXC chemokine and myeloperoxidase (MPO) levels and bronchoalveolar neutrophils in the lung as well as plasma levels of CD40L were quantified. Flow cytometry was used to determine expression of Mac-1 on neutrophils and CD40L on platelets. Intravital fluorescence microscopy was used to analyze leukocyte-endothelial cell interactions in the pulmonary microcirculation.
The MMP inhibitor reduced sepsis-induced release of CD40L and maintained normal levels of CD40L on platelets. Inhibition of MMP decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema as well as neutrophil infiltration in the lung. Intravital fluorescence microscopy revealed that the MMP inhibitor attenuated leukocyte adhesion in venules whereas capillary trapping of leukocytes was not affected by MMP inhibition.
We describe a novel role of metalloproteinases in regulating platelet-dependent activation and infiltration of neutrophils in septic lung injury which might be related to controlling CD40L shedding from platelets. We conclude that targeting metalloproteinases may be a useful strategy for limiting acute lung injury in abdominal sepsis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. Warm hepatic ischemia-reperfusion (I/R) injury can lead to multiorgan dysfunction. The aim of the present study was to investigate whether acute liver I/R does affect the function and/or structure of remote organs such as lung, kidney, and heart via modulation of extracellular matrix remodelling. Methods. Male Sprague-Dawley rats were subjected to 30 min partial hepatic ischemia by clamping the hepatic artery and the portal vein. After a 60 min reperfusion, liver, lung, kidney, and heart biopsies and blood samples were collected. Serum hepatic enzymes, creatinine, urea, Troponin I and TNF-alpha, and tissue matrix metalloproteinases (MMP-2, MMP-9), myeloperoxidase (MPO), malondialdehyde (MDA), and morphology were monitored. Results. Serum levels of hepatic enzymes and TNF-alpha were concomitantly increased during hepatic I/R. An increase in hepatic MMP-2 and MMP-9 activities was substantiated by tissue morphology alterations. Notably, acute hepatic I/R affect the lung inasmuch as MMP-9 activity and MPO levels were increased. No difference in MMPs and MPO was observed in kidney and heart. Conclusions. Although the underlying mechanism needs further investigation, this is the first study in which the MMP activation in a distant organ is reported; this event is probably TNF-alpha-mediated and the lung appears as the first remote organ to be involved in hepatic I/R injury.
    The Scientific World Journal 01/2014; 2014:867548. · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are small circulating anucleate cells that are of crucial importance in haemostasis. Over the last decade, it has become increasingly clear that platelets play an important role in inflammation and can influence both innate and adaptive immunity. Sepsis is a potentially lethal condition caused by detrimental host response to an invading pathogen. Dysbalanced immune response and activation of the coagulation system during sepsis are fundamental events leading to sepsis complications and organ failure. Platelets, being major effector cells in both haemostasis and inflammation, are involved in sepsis pathogenesis and contribute to sepsis complications. Platelets catalyse the development of hyperinflammation, disseminated intravascular coagulation and microthrombosis, and subsequently contribute to multiple organ failure. Inappropriate accumulation and activity of platelets are key events in the development of sepsis-related complications such as acute lung injury and acute kidney injury. Platelet activation readouts could serve as biomarkers for early sepsis recognition; inhibition of platelets in septic patients seems like an important target for immune-modulating therapy and appears promising based on animal models and retrospective human studies.
    Thrombosis and haemostasis. 06/2014; 112(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis continues to have a high mortality rate worldwide. The multi-step effects of this syndrome make it difficult to develop a comprehensive understanding of its pathophysiology and to identify a direct treatment. Neutrophils play a major role in controlling infection. Interestingly, the recruitment of these cells to an infection site is markedly reduced in severe sepsis. The systemic activation of Toll-like receptors and high levels of TNF-α and nitric oxide are involved in the reduction of neutrophil recruitment due to down-regulation of CXCR2 in neutrophils. By contrast, CCR2 is expressed in neutrophils after sepsis induction and contributes to their recruitment to organs far from the infection site, which contributes to organ damage. This review provides an overview of the recent advances in the understanding of the role of neutrophils in sepsis, highlighting their potential as a therapeutic target.
    Expert Review of Clinical Immunology 05/2014; · 2.89 Impact Factor


Available from
May 21, 2014