Article

Intestinal methane production in obese individuals is associated with a higher body mass index.

GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA.
Gastroenterology and Hepatology 01/2012; 8(1):22-8.
Source: PubMed

ABSTRACT Obesity is an epidemic that affects 1 in 3 individuals in the United States, and recent evidence suggests that enteric microbiota may play a significant role in the development of obesity. This study evaluated the association between methanogenic archaea and obesity in human subjects.
Subjects with a body mass index (BMI) of 30 kg/m² or higher were prospectively recruited from the weight loss program of a tertiary care medical center. Subjects who met the study's inclusion criteria were asked to complete a questionnaire that included a series of visual analogue scores for bowel symptom severities. Subjects then provided a single end-expiratory breath sample to quantitate methane levels. Bivariate and multivariate analyses were used to determine associations with BMI.
A total of 58 patients qualified for enrollment. Twenty percent of patients (n = 12) had breath test results that were positive for methane (>3 parts per million [ppm]), with a mean breath methane concentration of 12.2±3.1 ppm. BMI was significantly higher in methane-positive subjects (45.2±2.3 kg/m²) than in methane-negative subjects (38.5±0.8 kg/m²; P=.001). Methane-positive subjects also had a greater severity of constipation than methane-negative subjects (21.3±6.4 vs 9.5±2.4; P=.043). Multiple regression analysis illustrated a significant association between BMI and methane, constipation, and antidepressant use. However, methane remained an independent predictor of elevated BMI when controlling for antidepressant use (P<.001) and when controlling for both constipation and antidepressant use (6.55 kg/m² greater BMI; P=.003).
This is the first human study to demonstrate that a higher concentration of methane detected by breath testing is a predictor of significantly greater obesity in overweight subjects.

Full-text

Available from: Edy Soffer, Oct 06, 2014
1 Follower
 · 
173 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, including 416 twin pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a co-occurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germ-free mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism.
    Cell 11/2014; 159(4):789–799. DOI:10.1016/j.cell.2014.09.053 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior studies have indicated that MJ1099 from Methanocaldococcus jannaschii has roles in the biosynthesis of tetrahydromethanopterin and methanofuran, two key cofactors of one-carbon (C1) metabolism in diverse organisms including the methanogenic archaea. Here, the structure of MJ1099 has been solved to 1.7 Å resolution using anomalous scattering methods. The results indicate that MJ1099 is a member of the TIM-barrel superfamily and that it is a homohexamer. Bioinformatic analyses identified a potential active site that is highly conserved among MJ1099 homologs and the key amino acids involved were identified. The results presented here should guide further studies of MJ1099 including mechanistic studies and possibly the development of inhibitors that target the methanogenic archaea in the digestive tracts of humans and that are a source of the greenhouse gas methane.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 11/2014; 70(Pt 11):1472-9. DOI:10.1107/S2053230X1402130X · 0.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent attention has focused on the significance of colonic Archaea in human health and energy metabolism. The main objectives of this study were to determine the associations among the number of fecal Archaea, body mass index (BMI), fecal short chain fatty acid (SCFA) concentrations, and dietary intakes of healthy humans. We collected demographic information, 3-d diet records, and breath and fecal samples from 95 healthy participants who were divided into 2 groups: detectable Archaea (>10(6) copies/g; Arch+ve) and undetectable Archaea. Dietary intakes, BMI, and fecal SCFAs were similar in both groups. The mean number of Archaea 16S rRNA gene copies detected in Arch+ve participants' feces was 8.9 ± 0.2 log/g wet weight. In Arch+ve participants, there were positive correlations between breath methane and age (r = 0.52; P = 0.001), total dietary fiber (TDF) intake (r = 0.57; P = 0.0003), and log number of fecal Archaea 16S rRNA gene copies (r = 0.35; P = 0.03). In the Arch+ve group, negative correlations were observed between TDF/1000 kcal and fecal total SCFA (r = -0.46; P ≤ 0.01) and between breath methane and fecal total SCFA (r = -0.42; P = 0.01). Principal component analysis identified a distinct Archaea factor with positive loadings of age, breath methane, TDF, TDF/1000 kcal, and number of log Archaea 16S rRNA gene copies. The results suggest that colonic Archaea is not associated with obesity in healthy humans. The presence of Archaea in humans may influence colonic fermentation by altering SCFA metabolism and fecal SCFA profile.
    Journal of Nutrition 06/2013; DOI:10.3945/jn.112.170894 · 4.23 Impact Factor