Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

The Key Laboratory of Veterinary Public Health, Harbin Veterinary Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
PLoS ONE (Impact Factor: 3.73). 01/2012; 7(2):e31434. DOI: 10.1371/journal.pone.0031434
Source: PubMed

ABSTRACT West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines development for WNV and other viruses of the JEV serocomplex.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The four serotypes of dengue viruses (DENV) represent one of the major mosquito-borne pathogen globally, so far no vaccine or specific antiviral is available. During virion maturation, the pr protein is cleaved from its precursor form prM protein on the surface of immature DENV by host protease. Recent findings have demonstrated that the pr protein not only played critical roles in virion assembly and maturation, but also involved in antibodies dependent enhancement of DENV infection. However, the B cell epitopes on the pr protein of DENV have not been well characterized at present. In this study, a set of 11 partially overlapping peptides spanning the entire pr protein of DENV-2 were fused with GST and expressed in E.coli, and ELISA screening with murine hyper immune antiserum against immature DENV identified the P8 peptide (57KQNEPEDIDCWCNST71) in the pr protein as the major immunodominant epitope. Fine mapping by truncated protein assays confirmed the 8-e peptide 57KQNEPEDI64 represented as the minimal requirement unit responsible for antibody binding. Importantly, the 8-e epitope could react with sera from dengue fever patients. Site-directed mutagenesis revealed the Asparagine residue at position 59 was important for epitope recognition. The 8-e epitope well coincided with the predicted B-cell epitopes by IEDB analysis, and 3D structural modeling mapped the 8-e peptide on the surface of prM-E heterodimers. Overall, our findings characterized a linearized B-cell epitope on the pr protein of DENV, which will help understand the life cycle of DENV and pathogenesis of dengue infections in human.
    Journal of General Virology 04/2013; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV) and West Nile virus (WNV) are two medically important flaviviruses that can cause severe hemorrhagic and encephalitic diseases in humans. Immune responses directed against the NS1 protein of flaviviruses can confer protection against lethal viral challenge. Previous studies have shown that the WNV NS1 protein harbors epitopes that elicit antibodies that cross react with JEV. Here we demonstrate that the WNV NS1 protein not only contains cross-reactive epitopes, but that the antibodies elicited by these cross-reactive epitopes provide partial protection against lethal JEV challenge in a mouse model. Mice immunized with WNV NS1 protein showed reduced morbidity and mortality following both intracerebral and intraperitoneal JEV challenge. WNV NS1 immunization attenuated the extent of lung pathology generated following JEV challenge, and delayed the appearance of other pathological findings including vascular cuffing. By screening and identifying the specific WNV NS1 protein-derived peptides recognized by serum antibodies elicited by immunization with WNV NS1 protein and by JEV challenge, we found after JEV challenge will induce several new epitopes, but which epitope primarily contribute to antibody-mediated cross protection need further evaluation. The knowledge and reagents generated in this study have potential applications in vaccine and subunit vaccine development for WNV and JEV.
    Veterinary Microbiology 06/2013; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonstructural protein-1 (NS1) of the Japanese encephalitis virus (JEV) is an immunogenic protein that is a potential candidate for the development of vaccines and diagnostic reagents. NS1 is known to be more specific than the E protein in serological testing of flavivirus infections. However, NS1 exhibits cross-reactivity among flaviviruses even within the same genus and more so within a serocomplex. However, the cross-reactive epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of a linear B-cell epitope that is common and specific to the JEV serocomplex of Flaviviridae. We generated an NS1-specific monoclonal antibody that cross-reacts with the West Nile virus (WNV) NS1 protein by immunizing mice with recombinant JEV NS1. For epitope mapping, 51 partially overlapping peptides spanning the entire NS1 protein were expressed with a glutathione S-transferase (GST) tag and screened using monoclonal antibodies. Two linear epitope-containing peptides were identified using enzyme-linked immunosorbent assay (ELISA). By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, we successfully identified the smallest unit of the linear epitope required to react with the monoclonal antibody. The linear epitope was located in amino acids residues 227ETHTLW232. Furthermore, results of the sequence alignment revealed that the epitope was highly conserved among JEV strains. Notably, the epitope is highly conserved among viruses of the JEV serocomplex. Furthermore, the homologous regions on NS1 proteins from dengue viruses showed no cross-reactivity with the monoclonal antibodies. The epitope was recognized by antisera against the WNV but not against the dengue virus. This novel JEV serocomplex-specific linear B-cell epitope of NS1 would be helpful in the development of new vaccines and diagnostic assays.
    Virus Research 01/2014; · 2.75 Impact Factor


Available from