Maximal adjuvant activity of nasally delivered IL-1α requires adjuvant-responsive CD11c(+) cells and does not correlate with adjuvant-induced in vivo cytokine production.

Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2012; 188(6):2834-46. DOI: 10.4049/jimmunol.1100254
Source: PubMed

ABSTRACT IL-1 has been shown to have strong mucosal adjuvant activities, but little is known about its mechanism of action. We vaccinated IL-1R1 bone marrow (BM) chimeric mice to determine whether IL-1R1 expression on stromal cells or hematopoietic cells was sufficient for the maximal adjuvant activity of nasally delivered IL-1α as determined by the acute induction of cytokine responses and induction of Bacillus anthracis lethal factor (LF)-specific adaptive immunity. Cytokine and chemokine responses induced by vaccination with IL-1α were predominantly derived from the stromal cell compartment and included G-CSF, IL-6, IL-13, MCP-1, and keratinocyte chemoattractant. Nasal vaccination of Il1r1(-/-) (knock-out [KO]) mice given wild-type (WT) BM (WT→KO) and WT→WT mice with LF + IL-1α induced maximal adaptive immune responses, whereas vaccination of WT mice given Il1r1(-/-) BM (KO→WT) resulted in significantly decreased production of LF-specific serum IgG, IgG subclasses, lethal toxin-neutralizing Abs, and mucosal IgA compared with WT→KO and WT→WT mice (p < 0.05). IL-1α adjuvant activity was not dependent on mast cells. However, the ability of IL-1α to induce serum LF-specific IgG2c and lethal toxin-neutralizing Abs was significantly impaired in CD11c-Myd88(-/-) mice when compared with WT mice (p < 0.05). Our results suggest that CD11c(+) cells must be directly activated by nasally administered IL-1α for maximal adjuvant activity and that, although stromal cells are required for maximal adjuvant-induced cytokine production, the adjuvant-induced stromal cell cytokine responses are not required for effective induction of adaptive immunity.

Download full-text


Available from: Baidong Hou, Aug 10, 2015
1 Follower
  • Source
    • "All data were analyzed with SPSS statistical software (IBM, Armonk , NY, USA). For ELISA analyses, samples that had undetectable levels of IL-1b were assigned a value of half the lowest detectable value in the assay (Thompson et al., 2012). Litter effects were controlled for by using pups from multiple litters per treatment group. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner.
    Brain Behavior and Immunity 10/2013; 37. DOI:10.1016/j.bbi.2013.10.029 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mucosal vaccination, capable of inducing protective immune responses both in the mucosal and systemic immune compartments, has many advantages and is regarded as a blue ocean in the vaccine industry. Mucosal vaccines can offer lower costs, better accessability, needle-free delivery, and higher capacity of mass immunizations during pandemics. However, only very limited number of mucosal vaccines was approved for human use in the market yet. Generally, induction of immune responses following mucosal immunization requires the co-administration of appropriate adjuvants that can initiate and support the effective collaboration between innate and adaptive immunity. Classically, adjuvant researches were rather empirical than keenly scientific. However, during last several years, fundamental scientific achievements in innate immunity have been translated into the development of new mucosal adjuvants. This review focuses on recent developments in the concepts of adjuvants and innate immunity, mucosal immunity with special interest of vaccine development, and basic and applied researches in mucosal adjuvant.
    07/2012; 1(1):50-63. DOI:10.7774/cevr.2012.1.1.50
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most pathogens access the body through the mucosal membranes. Therefore, effective vaccines that protect at these sites are much needed. However, despite early success with the live attenuated oral polio vaccine over 50 years ago, only a few new mucosal vaccines have been subsequently launched. This is partly due to problems with developing safe and effective mucosal adjuvants. In the past decade, however, the successful development of live attenuated mucosal vaccines against influenza virus and rotavirus infections has boosted interest in this field, and great expectations for new mucosal vaccines lie ahead. Here, I discuss the expanding knowledge and strategies used in the development of mucosal vaccines.
    Nature Reviews Immunology 07/2012; 12(8):592-605. DOI:10.1038/nri3251 · 33.84 Impact Factor
Show more