Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

Department of Anatomy, University of California-San Francisco, San Francisco, CA 94143, USA.
Journal of Cell Science (Impact Factor: 5.33). 02/2012; 125(Pt 11):2638-54. DOI: 10.1242/jcs.096875
Source: PubMed

ABSTRACT Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a developmental cellular process occurring during early embryo development, including gastrulation and neural crest cell migration. It can be broken down in distinct functional steps: (1) loss of baso-apical polarization characterized by cytoskeleton, tight junctions, and hemidesmosomes remodeling; (2) individualization of cells, including a decrease in cell-cell adhesion forces, (3) emergence of motility, and (4) invasive properties, including passing through the subepithelial basement membrane. These phases occur in an uninterrupted process, without requiring mitosis, in an order and with a degree of completion dictated by the microenvironment. The whole process reflects the activation of specific transcription factor families, called EMT transcription factors. Several mechanisms can combine to induce EMT. Some are reversible, involving growth factors and cytokines and/or environmental signals including extracellular matrix and local physical conditions. Others are irreversible, such as genomic alterations during carcinoma progression, along a selective and irreversible clonal drift. In carcinomas, these signals can converge to initiate a metastable phenotype. In this state, similarly to activated keratinocytes during re-epithelialization, cells can initiate a cohort migration and engage into a transient and reversible EMT controlled by the local environment prior to efficient intravasation and metastasis. EMT transcription factors also participate in cancer progression by inducing apoptosis resistance and maintaining stem-like properties exposed in tumor recurrences. These properties, very important on a clinical point of view, are not intrinsically linked to EMT, but can share common pathways. © 2015 Elsevier Inc. All rights reserved.
    Current Topics in Developmental Biology 01/2015; 112:273-300. DOI:10.1016/bs.ctdb.2014.11.021 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination.
    PLoS Biology 03/2015; 13(3):e1002107. DOI:10.1371/journal.pbio.1002107 · 11.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial tissues are essential for barrier function, secretion, and regulation of fluid transport. Their function requires cell polarity and cell-cell adhesion, mediated through intercellular junctions. Conversely, disruption of adhesion and polarity is thought to drive cancer progression. The mammary gland is an important model for cell adhesion due to its postnatal hormonally regulated development; ducts undergo branching morphogenesis in response to steroid hormones during puberty. These hormonal signals induce a transition from simple to stratified architecture, initiated by asymmetric luminal cell divisions. Ductal elongation is accomplished by this multilayered, low-polarity epithelium, and polarity is reestablished as elongation ceases. The requirement for cell adhesion has been tested in 3D culture and in vivo, using gene deletion, knockdown, and misexpression in both developmental and homeostatic contexts. Attention has focused on E-cadherin, the major classical cadherin in luminal epithelial cells. Classic studies revealed a requirement for E-cadherin during lactation, and E-cadherin loss is widely posited to promote metastasis. However, recent findings demonstrated a broader requirement for E-cadherin during branching morphogenesis and homeostasis and also, surprisingly, in epithelial dissemination. These studies suggest that long-standing models of the role of adhesion in epithelial biology need to be revisited. Advances in inducible gene expression and knockdown, CRISPR/Cas9 technology, and fluorescent labeling of genetically modified cells offer the opportunity to test the roles of diverse adhesion systems and to develop a mechanistic understanding of how cell adhesion regulates development and cancer. © 2015 Elsevier Inc. All rights reserved.
    Current Topics in Developmental Biology 01/2015; 112:353-82. DOI:10.1016/bs.ctdb.2014.12.001 · 4.21 Impact Factor