Article

Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis.

Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe (QC), J2S 7C6, Canada.
Osteoarthritis and Cartilage (Impact Factor: 4.26). 02/2012; 20(6):572-83. DOI: 10.1016/j.joca.2012.02.004
Source: PubMed

ABSTRACT To correlate degenerative changes in cartilage and subchondral bone in the third carpal bone (C3) of Standardbred racehorses with naturally occurring repetitive trauma-induced osteoarthritis.
Fifteen C3, collected from Standardbred horses postmortem, were assessed for cartilage lesions by visual inspection and divided into Control (CO), Early Osteoarthritis (EOA) and Advanced Osteoarthritis (AOA) groups. Two osteochondral cores were harvested from corresponding dorsal sites on each bone and scanned with a micro-computed tomography (CT) instrument. 2D images were assembled into 3D reconstructions that were used to quantify architectural parameters from selected regions of interest, including bone mineral density and bone volume fraction. 2D images, illustrating the most severe lesion per core, were scored for architectural appearance by blinded observers. Thin sections of paraffin-embedded decalcified cores stained with Safranin O-Fast Green, matched to the micro-CT images, were scored using a modified Mankin scoring system.
Subchondral bone pits with deep focal areas of porosity were seen more frequently in AOA than EOA but never in CO. Articular cartilage damage was seen in association with a reduction in bone mineral and loss of bone tissue. Histological analyses revealed significant numbers of microcracks in the calcified cartilage of EOA and AOA groups and a progressive increase in the score compared with CO bones.
The data reveal corresponding, progressive degenerative changes in articular cartilage and subchondral bone, including striking focal resorptive lesions, in the third carpal bone of racehorses subjected to repetitive, high impact trauma.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo.
    Journal of Anatomy 10/2014; · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of microRNAs (miRNAs) as a post-transcriptional gene regulator has been elucidated in a broad range of organisms including domestic animals. Characterization of miRNAs in normal tissues is an important step to investigate the functions of miRNAs in various physiological and pathological conditions. Using Illumina Next Generation Sequencing (NGS) technology, we identified a total of 292 known and 329 novel miRNAs in normal horse tissues including skeletal muscle, colon and liver. Distinct sets of miRNAs were differentially expressed in a tissue-specific manner. The miRNA genes were distributed across all the chromosomes except chromosomes 29 and 31 in the horse reference genome. In some chromosomes, multiple miRNAs were clustered and considered to be polycistronic transcript. A base composition analysis showed that equine miRNAs had a higher frequency of A+U than G+C. Furthermore, U tended to be more frequent at the 5' end of miRNA sequences. This is the first experimental study that identifies and characterizes the global miRNA expression profile in normal horse tissues. The present study enriches the horse miRNA database and provides useful information for further research dissecting biological functions of miRNAs in horse.
    PLoS ONE 01/2014; 9(4):e93662. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.
    BioMed Research International 01/2014; 2014:746138. · 2.71 Impact Factor

Similar Publications