Article

Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis

Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe (QC), J2S 7C6, Canada.
Osteoarthritis and Cartilage (Impact Factor: 4.66). 02/2012; 20(6):572-83. DOI: 10.1016/j.joca.2012.02.004
Source: PubMed

ABSTRACT To correlate degenerative changes in cartilage and subchondral bone in the third carpal bone (C3) of Standardbred racehorses with naturally occurring repetitive trauma-induced osteoarthritis.
Fifteen C3, collected from Standardbred horses postmortem, were assessed for cartilage lesions by visual inspection and divided into Control (CO), Early Osteoarthritis (EOA) and Advanced Osteoarthritis (AOA) groups. Two osteochondral cores were harvested from corresponding dorsal sites on each bone and scanned with a micro-computed tomography (CT) instrument. 2D images were assembled into 3D reconstructions that were used to quantify architectural parameters from selected regions of interest, including bone mineral density and bone volume fraction. 2D images, illustrating the most severe lesion per core, were scored for architectural appearance by blinded observers. Thin sections of paraffin-embedded decalcified cores stained with Safranin O-Fast Green, matched to the micro-CT images, were scored using a modified Mankin scoring system.
Subchondral bone pits with deep focal areas of porosity were seen more frequently in AOA than EOA but never in CO. Articular cartilage damage was seen in association with a reduction in bone mineral and loss of bone tissue. Histological analyses revealed significant numbers of microcracks in the calcified cartilage of EOA and AOA groups and a progressive increase in the score compared with CO bones.
The data reveal corresponding, progressive degenerative changes in articular cartilage and subchondral bone, including striking focal resorptive lesions, in the third carpal bone of racehorses subjected to repetitive, high impact trauma.

1 Follower
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-μm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-μm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo.
    Journal of Anatomy 10/2014; 225(4):n/a-n/a. DOI:10.1111/joa.12226 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tidemark is located between calcified and non-calcified cartilage matrices. Tidemark replication plays an important role in the pathogenesis of osteoarthrosis (OA). Autophagy, or cellular self-digestion, is an essential cellular homeostasis mechanism that was found to be deficient in osteoarthritic cartilage. This study evaluated the effects of Tougu Xiaotong capsule (TXC) on the tidemark replication and cartilage degradation, and also investigated LC3 I/II, which executes autophagy, the potential role of ULK1, an inducer of autophagy, and Beclin1, a regulator of autophagy, in the development of a papain-induced OA in rat knee joints. Using a papain-injected knee rat model, standard histological methods were used to validate our model as well as treatment with TXC or glucosamine (GlcN). After 12 weeks of treatment, the changes of cartilage structure were observed by digital radiography (DR), optical microscopy, scanning electron microscopy and transmission electron microscopy, and the LC3 I/II, ULK1 and Beclin1 levels were measured by western blotting. Cartilage degradation was evaluated by the Mankin score on paraffin-embedded sections stained with Safranin O-fast green. TXC was found to improve the arrangement of subchondral bone collagen fibers and calcium phosphate crystals, inhibit the tidemark replication and delay the cartilage degradation in the papain-induced OA. Our results also showed that LC3 I/II, ULK1 and Beclin1 levels in both the TXC+OA and GlcN+OA groups were significantly increased compared to those in the OA group. The results indicate that TXC could inhibit the tidemark replication and cartilage degradation by the regulation of chondrocyte autophagy.
    International Journal of Molecular Medicine 04/2013; 31(6). DOI:10.3892/ijmm.2013.1341 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a "flow like" manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a "flow like" manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.
    BioMed Research International 01/2014; 2014:746138. DOI:10.1155/2014/746138 · 2.71 Impact Factor