Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans

Department of Medical Chemistry, Faculty of Medicine, Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary.
Microbiology (Impact Factor: 2.56). 02/2012; 158(Pt 5):1258-67. DOI: 10.1099/mic.0.057075-0
Source: PubMed


The opportunistic pathogen Candida albicans has a single protein phosphatase Z (PPZ) candidate gene termed CaPPZ1, which shows significant allele variability. We demonstrate here that bacterially expressed CaPpz1 protein exhibits phosphatase activity which can be inhibited by recombinant Hal3, a known inhibitor of Saccharomyces cerevisiae Ppz1. Site-directed mutagenesis experiments based on natural polymorphisms allowed the identification of three amino acid residues that affect enzyme activity or stability. The expression of CaPPZ1 in ppz1 S. cerevisiae and pzh1 Schizosaccharomyces pombe cells partially rescued the salt and caffeine phenotypes of the deletion mutants. CaPpz1 also complemented the slt2 S. cerevisiae mutant, which is crippled in the mitogen-activated protein (MAP) kinase that mediates the cell wall integrity signalling pathway. Collectively, our results suggest that the orthologous PPZ enzymes have similar but not identical functions in different fungi. The deletion of the CaPPZ1 gene in C. albicans resulted in a mutant that was sensitive to salts such as LiCl and KCl, to caffeine, and to agents that affect cell wall biogenesis such as Calcofluor White and Congo red, but was tolerant to spermine and hygromycin B. Reintegration of the CaPPZ1 gene into the deletion mutant alleviated all of the mutant phenotypes tested. Thus CaPpz1 is involved in cation homeostasis, cell wall integrity and the regulation of the membrane potential of C. albicans. In addition, the germ tube growth rate, and virulence in the BALB/c mouse model, were reduced in the null mutant, suggesting a novel function for CaPpz1 in the yeast to hypha transition that may have medical relevance.

10 Reads
  • Source
    • "Complementation of RLM1 partially restored the virulence phenotype, indicating that gene dosage is important. This partial complementation has also been reported for several genes in C. albicans, including genes involved in the cell wall integrity [58], [60]–[62]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.
    PLoS ONE 01/2014; 9(1):e86270. DOI:10.1371/journal.pone.0086270 · 3.23 Impact Factor
  • Source
    • "MATa his3D1 leu2D met15D ura3D slt2::kanMX4 Winzeler et al. (1999) Schizosaccharomyces pombe LB2 hade6-M210 leu1-32 pzh1::ura4 + ura-D18 Balcells et al. (1997) Schizosaccharomyces pombe pzh1 + hade6-M210 leu1-32 Ádám et al. (2012) Candida albicans SN87 ura3D-iro1D::imm 434 /URA3-IRO1, his1D/his1D, leu2D/leu2D Noble and Johnson (2005) Candida albicans DCaPPZ1 ura3D-iro1D::imm 434 /URA3-IRO1, his1D/his1D, leu2D/leu2D ppz1D::HIS1/ ppz1D::LEU2 Ádám et al. (2012) Aspergillus nidulans HZS145 wild type à "
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.
    Fungal Genetics and Biology 06/2012; 49(9):708-16. DOI:10.1016/j.fgb.2012.06.010 · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, forming an atypical heterotrimeric decarboxylase (PPCDC) required for CoA biosynthesis, and regulating cation homeostasis by inhibition of the Ppz1 phosphatase. The Schizosaccharomyces pombe ORF SPAC15E1.04 (renamed as Sp hal3) encodes a protein whose amino-terminal half is similar to Sc Hal3 whereas its carboxyl-terminal half is related to thymidylate synthase (TS). We show that Sp Hal3 and/or its N-terminal domain retain the ability to bind to and modestly inhibit in vitro S. cerevisiae Ppz1 as well as its S. pombe homolog Pzh1, and also exhibit PPCDC activity in vitro and provide PPCDC function in vivo, indicating that Sp Hal3 is a monogenic PPCDC in fission yeast. Whereas the Sp Hal3 N-terminal domain partially mimics Sc Hal3 functions, the entire protein and its carboxyl-terminal domain rescue the S. cerevisiae cdc21 mutant, thus proving TS function. Additionally, we show that the 70 kDa Sp Hal3 protein is not proteolytically processed under diverse forms of stress and that, as predicted, Sp hal3 is an essential gene. Therefore, Sp hal3 represents a fusion event that joined three different functional activities in the same gene. The possible advantage derived from this surprising combination of essential proteins is discussed.
    Molecular Microbiology 08/2013; 90(2):367-382. DOI:10.1111/mmi.12370 · 4.42 Impact Factor
Show more