Article

Insulin-like growth factor 2/H19 methylation at birth and risk of overweight and obesity in children.

Department of Community and Family Medicine, Duke University, Durham, NC 27710, USA.
The Journal of pediatrics (Impact Factor: 4.02). 02/2012; 161(1):31-9. DOI: 10.1016/j.jpeds.2012.01.015
Source: PubMed

ABSTRACT To determine whether aberrant DNA methylation at differentially methylated regions (DMRs) regulating insulin-like growth factor 2 (IGF2) expression in umbilical cord blood is associated with overweight or obesity in a multiethnic cohort.
Umbilical cord blood leukocytes of 204 infants born between 2005 and 2009 in Durham, North Carolina, were analyzed for DNA methylation at two IGF2 DMRs by using pyrosequencing. Anthropometric and feeding data were collected at age 1 year. Methylation differences were compared between children >85th percentile of the Centers for Disease Control and Prevention growth charts weight-for-age (WFA) and children ≤ 85th percentile of WFA at 1 year by using generalized linear models, adjusting for post-natal caloric intake, maternal cigarette smoking, and race/ethnicity.
The methylation percentages at the H19 imprint center DMR was higher in infants with WFA >85th percentile (62.7%; 95% CI, 59.9%-65.5%) than in infants with WFA ≤ 85th percentile (59.3%; 95% CI, 58.2%-60.3%; P = .02). At the intragenic IGF2 DMR, methylation levels were comparable between infants with WFA ≤ 85th percentile and infants with WFA >85th percentile.
Our findings suggest that IGF2 plasticity may be mechanistically important in early childhood overweight or obese status. If confirmed in larger studies, these findings suggest aberrant DNA methylation at sequences regulating imprinted genes may be useful identifiers of children at risk for the development of early obesity.

0 Bookmarks
 · 
185 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic regulation of imprinted genes is regarded as a highly plausible explanation for linking dietary exposures in early life with the onset of diseases during childhood and adulthood. We sought to test whether prenatal dietary supplementation with docosahexaenoic acid (DHA) during pregnancy may modulate epigenetic states at birth. This study was based on a randomized intervention trial conducted in Mexican pregnant women supplemented daily with 400 mg of DHA or a placebo from gestation week 18-22 to parturition. We applied quantitative profiling of DNA methylation states at IGF2 promoter 3 (IGF2 P3), IGF2 differentially methylated region (DMR), and H19 DMR in cord blood mononuclear cells of the DHA-supplemented group (n=131) and the control group (n=130). In stratified analyses, DNA methylation levels in IGF2 P3 were significantly higher in the DHA group than the control group in preterm infants (p=0.04). We also observed a positive association between DNA methylation levels and maternal body mass index (BMI); IGF2 DMR methylation was higher in the DHA group than the control group in infants of overweight mothers (p=0.03). In addition, at H19 DMR, methylation levels were significantly lower in the DHA group than the control group in infants of normal weight mothers (p=0.01). Finally, methylation levels at IGF2/H19 imprinted regions were associated with maternal BMI. These findings suggest that epigenetic mechanisms may be modulated by DHA, with potential impacts on child growth and development.
    Physiological Genomics 10/2014; · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention.
    Physiological Reviews 10/2014; 94(4):1027-1076. · 29.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observational studies show consistent links between early-life nutritional exposures as important risk factors for the development of asthma, allergy, and obesity. Reliance on increasing use of dietary supplementation and fortification (eg, with folate) to compensate for increased consumption of processed foods is also influencing immune and metabolic outcomes. Epigenetics is providing substantial advances in understanding how early-life nutritional exposures can effect disease development. This article summarizes current evidence linking the influence of early-life nutritional exposures on epigenetic regulation with a focus on the disease outcomes of asthma, allergy, and obesity.
    Immunology and Allergy Clinics of North America. 11/2014;

Full-text

Download
66 Downloads
Available from
Jun 1, 2014