Article

Insulin-like growth factor 2/H19 methylation at birth and risk of overweight and obesity in children.

Department of Community and Family Medicine, Duke University, Durham, NC 27710, USA.
The Journal of pediatrics (Impact Factor: 4.02). 02/2012; 161(1):31-9. DOI: 10.1016/j.jpeds.2012.01.015
Source: PubMed

ABSTRACT To determine whether aberrant DNA methylation at differentially methylated regions (DMRs) regulating insulin-like growth factor 2 (IGF2) expression in umbilical cord blood is associated with overweight or obesity in a multiethnic cohort.
Umbilical cord blood leukocytes of 204 infants born between 2005 and 2009 in Durham, North Carolina, were analyzed for DNA methylation at two IGF2 DMRs by using pyrosequencing. Anthropometric and feeding data were collected at age 1 year. Methylation differences were compared between children >85th percentile of the Centers for Disease Control and Prevention growth charts weight-for-age (WFA) and children ≤ 85th percentile of WFA at 1 year by using generalized linear models, adjusting for post-natal caloric intake, maternal cigarette smoking, and race/ethnicity.
The methylation percentages at the H19 imprint center DMR was higher in infants with WFA >85th percentile (62.7%; 95% CI, 59.9%-65.5%) than in infants with WFA ≤ 85th percentile (59.3%; 95% CI, 58.2%-60.3%; P = .02). At the intragenic IGF2 DMR, methylation levels were comparable between infants with WFA ≤ 85th percentile and infants with WFA >85th percentile.
Our findings suggest that IGF2 plasticity may be mechanistically important in early childhood overweight or obese status. If confirmed in larger studies, these findings suggest aberrant DNA methylation at sequences regulating imprinted genes may be useful identifiers of children at risk for the development of early obesity.

0 Bookmarks
 · 
153 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic processes, defined as heritable changes in gene expression that occur without changes to the DNA sequence, have emerged as a promising area of cardiovascular disease research. Epigenetic information transcends that of the genotype alone and provides for an integrated etiologic picture of cardiovascular disease pathogenesis because of the interaction of the epigenome with the environment. Epigenetic biomarkers, which include DNA methylation, histone modifications, and RNA-based mechanisms, are both modifiable and cell-type specific, which makes them not only responsive to the environment, but also an attractive target for drug development. However, the enthusiasm surrounding possible applications of cardiovascular epigenetics currently outpaces available evidence. In this review, the authors synthesize the evidence linking epigenetic changes with cardiovascular disease, emphasizing the gap between the translational potential and the clinical reality of cardiovascular epigenetics.
    Translational research : the journal of laboratory and clinical medicine. 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-like growth factor-II (IGF-II) is a widely expressed 7.5kDa mitogenic peptide hormone. Although it is abundant in serum, understanding of its physiological role is limited compared to that of IGF-I. IGF-II regulates fetal development and differentiation but its role in adults is less well understood. Evidence suggests roles in a number of tissues including skeletal muscle, adipose tissue, bone and ovary. Altered IGF-II expression has been observed in metabolic conditions, notably obesity, diabetes and the polycystic ovary syndrome. This article summarises what is known about the actions of IGF-II and its dysregulation in metabolic and endocrine disease. The possible causes and consequences of dysregulation are discussed along with the implications for diagnostic tests and future research. This article is protected by copyright. All rights reserved.
    Clinical Endocrinology 03/2014; · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the mechanisms related to the development of type 2 diabetes (T2D) and other degenerative diseases at a molecular level, a better understanding of the changes in the chromatin structure and the corresponding functional changes in molecular pathways is still needed. For example, persons with low birth weight are at a high risk for development of T2D later in life, suggesting that the intrauterine environment contributes to the disease. One of the hypotheses is that epigenetic regulation, including changes in DNA methylation leading to modifications in chromatin structure, are behind metabolic alterations, e.g. leading to the phenomenon termed metabolic memory. Altered DNA methylation has been shown to affect healthy aging and also to promote age-related health problems. There is suggestive evidence that lifestyle changes including weight loss can have an impact on DNA methylation and consequently gene expression. In this review we provide an overview of human studies investigating DNA methylation in obesity and T2D and associated risk factors behind these diseases.
    Annals of medicine 04/2014; · 3.52 Impact Factor

Full-text

View
51 Downloads
Available from
Jun 1, 2014