TAK1 Inhibition Promotes Apoptosis in KRAS-Dependent Colon Cancers

Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA.
Cell (Impact Factor: 33.12). 02/2012; 148(4):639-50. DOI: 10.1016/j.cell.2011.12.033
Source: PubMed

ABSTRACT Colon cancers frequently harbor KRAS mutations, yet only a subset of KRAS mutant colon cancer cell lines are dependent upon KRAS signaling for survival. In a screen for kinases that promote survival of KRAS-dependent colon cancer cells, we found that the TAK1 kinase (MAP3K7) is required for tumor cell viability. The induction of apoptosis by RNAi-mediated depletion or pharmacologic inhibition of TAK1 is linked to its suppression of hyperactivated Wnt signaling, evident in both endogenous and genetically reconstituted cells. In APC mutant/KRAS-dependent cells, KRAS stimulates BMP-7 secretion and BMP signaling, leading to TAK1 activation and enhancement of Wnt-dependent transcription. An in vitro-derived "TAK1 dependency signature" is enriched in primary human colon cancers with mutations in both APC and KRAS, suggesting potential clinical utility in stratifying patient populations. Together, these findings identify TAK1 inhibition as a potential therapeutic strategy for a treatment-refractory subset of colon cancers exhibiting aberrant KRAS and Wnt pathway activation.

Download full-text


Available from: Anurag Singh, Feb 13, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factors nuclear factor-κB (NF-κB) and activating protein-1 (AP-1) are critical regulators of stress responses, immunity, inflammation and cancer. A large variety of cellular stimuli utilize these signaling pathways through a common upstream kinase transforming growth factor-β-activated kinase 1 (TAK1). TAK1 was originally identified as a mitogen-activated kinase kinase kinase (MAP3K) activated by transforming growth factor-β (TGF-β); however, it has been characterized as a key regulator in inflammatory and immune signaling pathways. In addition, microbial proteins and components of host cell signaling scramble for the TAK1 complex in innate immunity. This review highlights the recent advances in the activation mechanisms and physiological functions of TAK1. Research targeting TAK1 raises the potential for new therapeutic options for inflammatory disorders, including cancer.
    Trends in Pharmacological Sciences 07/2012; 33(10):522-30. DOI:10.1016/ · 9.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCN6 (WISP3) is an extracellular matrix protein that exerts tumor suppressive functions in breast cancer, where its decreased expression is a feature of advanced disease. However, neither its role nor mechanism of action in breast cancer metastasis has been established. Bone morphogenetic proteins (BMPs), which constitute ligands of the TGF-β superfamily, are multifunctional cytokines that induce epithelial-mesenchymal transition, cell invasion, and metastasis. In this study, we identify a CCN6-BMP4-TAK1 kinase signaling pathway that controls the ability of the p38 MAP kinase to regulate acinar morphogenesis and invasion of breast cells. ShRNA-mediated attenuation of CCN6 in human mammary epithelial cells led to BMP4 upregulation as a major response to exposure to the TGF-β superfamily. CCN6 attenuation also induced BMP4-mediated activation of the Smad-independent TAK1 and p38 kinases. Conversely, ectopic expression of CCN6 in breast cancer cells antagonized BMP4-mediated TAK1/p38 activation and invasive capacity, both by binding BMP4 protein as well as decreasing BMP4 protein levels. Effects on BMP4 and p38 were confirmed in vivo where they correlated with decreased metastasis. In clinical specimens, we found that CCN6 expression was inversely associated with BMP4 and phospho-p38 levels in 69% of invasive breast carcinomas examined, consistent with the functional results. Together our findings identify a novel modifier pathway through which CCN6 acts to limit breast cancer invasion and metastasis. Cancer Res; 72(18); 4818-28. ©2012 AACR.
    Cancer Research 07/2012; 72(18):4818-28. DOI:10.1158/0008-5472.CAN-12-0154 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Epstein-Barr virus (EBV)-encoded protein latent membrane protein 1 (LMP1) is essential for EBV-mediated B cell transformation and plays a critical role in the development of post-transplant B cell lymphomas. LMP1 also contributes to the exacerbation of autoimmune diseases such as systemic lupus erythematosus (SLE). LMP1 is a functional mimic of the tumor necrosis factor receptor (TNFR) superfamily member CD40, and relies on TNFR-associated factor (TRAF) adaptor proteins to mediate signaling. However, LMP1 activation signals to the B cell are amplified and sustained compared to CD40 signals. We previously demonstrated that LMP1 and CD40 use TRAF molecules differently. Although associating with CD40 and LMP1 via separate mechanisms, TRAF6 plays a significant role in signal transduction by both. It is unknown whether TRAF6 mediates CD40 versus LMP1 functions via distinct or shared pathways. In this study, we tested the hypothesis that TRAF6 uses the kinase TAK1 to trigger important signaling pathways following both CD40 and LMP1 stimulation. We determined that TAK1 was required for JNK activation and interleukin-6 (IL-6) production mediated by CD40 and LMP1, in both mouse and human B cells. Additionally, TRAF3 negatively regulated TRAF6-dependent, CD40-mediated TAK1 activation by limiting TRAF6 recruitment. This mode of regulation was not observed for LMP1 and may contribute to the dysregulation of LMP1 compared to CD40 signals.
    PLoS ONE 07/2012; 7(7):e42478. DOI:10.1371/journal.pone.0042478 · 3.53 Impact Factor