Article

Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus.

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
Veterinary Microbiology (Impact Factor: 3.13). 01/2012; 157(3-4):285-93. DOI: 10.1016/j.vetmic.2012.01.011
Source: PubMed

ABSTRACT Infectious bronchitis virus (IBV), an avian coronavirus, is a cause of great economic loss in the poultry industry. The virus mainly infects respiratory epithelium, but can be also detected in other organs. The functional receptor for the virus has not been found and field strains of IBV do not infect conventional cell lines. Recently, it has been shown that the C-type lectins DC-SIGN/L-SIGN can promote entry of several coronaviruses. Here we examine whether DC-SIGN/L-SIGN are entry determinants for IBV. We show that by introducing human DC-SIGN/L-SIGN into non-permissive cells, infection by the IBV is dramatically increased. DC-SIGN mediated infection was inhibited by mannan and anti-lectin antibodies, and was independent of sialic acid levels on the cell. Enhancement of IBV infection also occurred for different serotypes of IBV. Our findings demonstrated that even in the absence of avian-specific receptor, DC-SIGN-like lectins are capable of mediating efficient IBV infection.

0 Bookmarks
 · 
58 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C-type lectins DC-SIGN, DC-SIGNR and LSECtin are encoded by the lectin gene cluster on chromosome 19p13.3 and perform cell-adhesion and pathogen recognition functions on dendritic cells, liver cells and lymph node sinusoidal endothelial cells. DC-SIGN and DC-SIGNR share similar overall gene and protein molecule structures, and they exhibit high affinity for high-mannose carbohydrates. LSECtin, a Ca(2+)-dependent C-type lectin, interacts with mannose, NAcGlc and fucose. These lectins allow pathogen recognition (e.g., viruses, bacteria and allergens) and cell adhesion for dendritic and endothelial cells in different tissues, which may enhance the infection and facilitate the spread of those pathogens. A better understanding of these lectins may yield information about how pathogens are captured by particular cells and how they spread in different tissues. These studies would provide more detail about the physiopathological mechanisms of viral and bacterial infections and may also lead to new strategies to treat or prevent infections.
    International Reviews Of Immunology 10/2013; · 5.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese Encephalitis virus (JEV) is a mosquito borne flavivirus that infects macrophages, monocytes and dendritic cells (DCs) during in vivo replication. The C-type lectins DC-SIGN and DC-SIGNR have been reported to act as cell attachment factors for diverse array of pathogens. In this study, the effect of these lectins on JEV infection was investigated after the generation of 293T-SIGN (R) cell lines expressing DC-SIGN and DC-SIGNR receptors. It was observed that only DC-SIGN but not the DC-SIGNR can act as a viral attachment factor in case of JEV infection. The infection to cells expressing DC-SIGN was efficiently blocked by anti-DC-SIGN and mannan molecules. It was also found that insect derived JEV has higher affinity for DC-SIGN as compare to the mammalian derived JEV. These results initially suggest that DC-SIGN could act as viral attachment receptors (VAR) for JEV and enhance JEV infection. ©2013 PVJ. All rights reserved
    Pakistan Veterinary Journal 01/2014; 33(4):408-412. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spike protein is the major viral attachment protein of the avian coronavirus infectious bronchitis virus (IBV) and ultimately determines viral tropism. The S1 subunit of the spike is assumed to be required for virus attachment. However, we have previously shown that this domain of the embryo- and cell culture adapted Beaudette strain, in contrast to that of the virulent M41 strain, is not sufficient for binding to chicken trachea (Wickramasinghe et al., 2011). In the present study, we demonstrated that the lack of binding of Beaudette S1 was not due to absence of virus receptors on this tissue nor due to the production of S1 from mammalian cells, as S1 proteins expressed from chicken cells also lacked the ability to bind IBV-susceptible embryonic tissue. Subsequently, we addressed the contribution of the S2 subunit of the spike in IBV attachment. Recombinant IBV Beaudette spike ectodomains, comprising the entire S1 domain and the S2 ectodomain, were expressed and analyzed for binding to susceptible embryonic chorio-allantoic membrane (CAM) in our previously developed spike histochemistry assay. We observed that extension of the S1 domain with the S2 subunit of the Beaudette spike was sufficient to gain binding to CAM. A previously suggested heparin sulfate binding site in Beaudette S2 was not required for the observed binding to CAM, while sialic acids on the host tissues were essential for the attachment. To further elucidate the role of S2 the spike ectodomains of virulent IBV M41 and chimeras of M41 and Beaudette were analyzed for their binding to CAM, chicken trachea and mammalian cell lines. While the M41 spike ectodomain showed increased attachment to both CAM and chicken trachea, no binding to mammalian cells was observed. In contrast, Beaudette spike ectodomain had relatively weak ability to bind to chicken trachea, but displayed marked extended host range to mammalian cells. Binding patterns of chimeric spike ectodomains to these tissues and cells indicate that S2 subunits most likely do not contain an additional independent receptor-binding site. Rather, the interplay between S1 and S2 subunits of spikes from the same viral origin might finally determine the avidity and specificity of virus attachment and thus viral host range.
    Virus Research 09/2013; · 2.75 Impact Factor