Article

Dynamical Modeling of Three-Dimensional Genome Organization in Interphase Budding Yeast

Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan.
Biophysical Journal (Impact Factor: 3.83). 01/2012; 102(2):296-304. DOI: 10.1016/j.bpj.2011.12.005
Source: PubMed

ABSTRACT Eukaryotic genome is organized in a set of chromosomes each of which consists of a chain of DNA and associated proteins. Processes involving DNA such as transcription, duplication, and repair, therefore, should be intrinsically related to the three-dimensional organization of the genome. In this article, we develop a computational model of the three-dimensional organization of the haploid genome of interphase budding yeast by regarding chromosomes as chains moving under the constraints of nuclear structure and chromatin-chromatin interactions. The simulated genome structure largely fluctuates with the diffusive movement of chromosomes. This fluctuation, however, is not completely random, as parts of chromosomes distribute in characteristic ways to form "territories" in the nucleus. By suitably taking account of constraints arising from the data of the chromosome-conformation-capture measurement, the model explains the observed fluorescence data of chromosome distributions and motions.

0 Bookmarks
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The eukaryotic genome exists in vivo at an equimolar ratio with histones, thus forming a polymer composed of DNA and histone proteins. Each nucleosomal unit in this polymer provides versatile capabilities and dynamic range. Substitutions of the individual components of the histone core with structurally distinct histone variants and covalent modifications alter the local fabric of the chromatin fiber, resulting in epigenetic changes that can be regulated by the cell. In this review, we highlight recent advances in the study of histone variant structure, assembly, and inheritance, their influence on nucleosome positioning, and their cumulative effect upon gene expression, DNA repair and the progression of disease. We also highlight fundamental questions that remain unanswered regarding the behavior of histone variants and their influence on cellular function in the normal and diseased states.
    Current opinion in genetics & development 01/2014; 25C:8-14. DOI:10.1016/j.gde.2013.11.006 · 8.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the "boundary conditions" - points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE) attachments of polytene (giant) chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin - gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin - gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not appear to arise due to non-specific (entropic) forces. Robustness of the key conclusions to model assumptions is thoroughly checked.
    PLoS ONE 03/2014; 9(3):e91943. DOI:10.1371/journal.pone.0091943 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.
    PLoS ONE 07/2014; 9(7):e102474. DOI:10.1371/journal.pone.0102474 · 3.53 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
Jun 2, 2014